

DOSSIER D'ENQUETE PUBLIQUE DES ZONAGES D'ASSAINISSEMENT DES EAUX USEES ET DES EAUX PLUVIALES

CCPO (77)

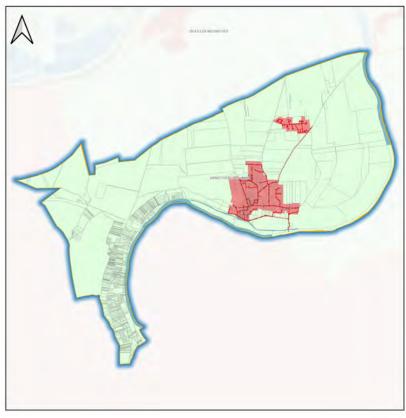
Rapport

01647802 | août 2025 | v3

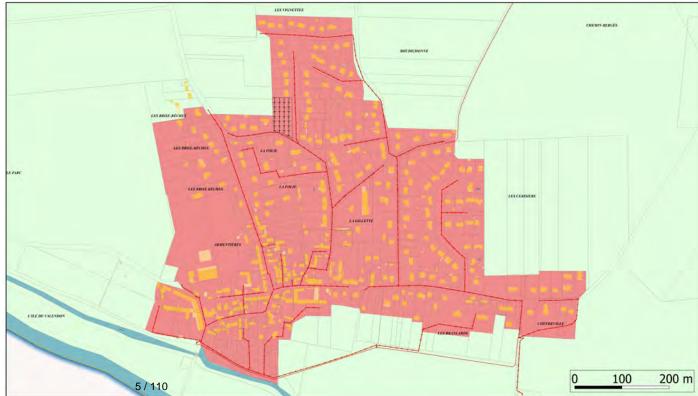
ANNEXES 8 ET 9

Mandataire:

Annexes


Annexe 8 Plans de zonage des eaux usées par commune	4
Annexe 9 Plans de zonage des eaux pluviales par commune et notice	27

ANNEXE 8:


PLANS DE ZONAGE DES EAUX USEES PAR COMMUNE

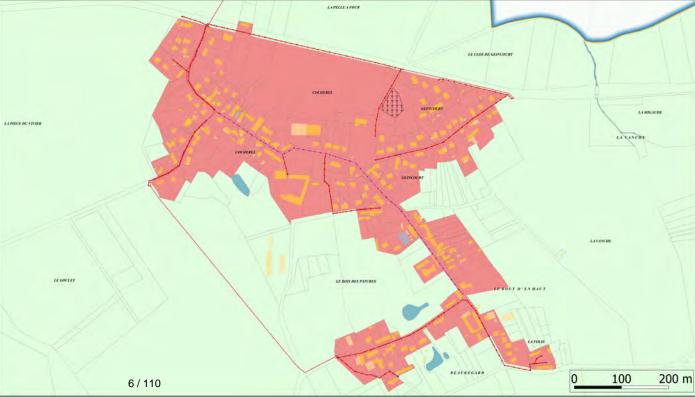
Plan de zonage eaux usées - Armentières-en-Brie

Légende

assainissement collectif
assainissement non collectif
—gravaitaire eaux usées

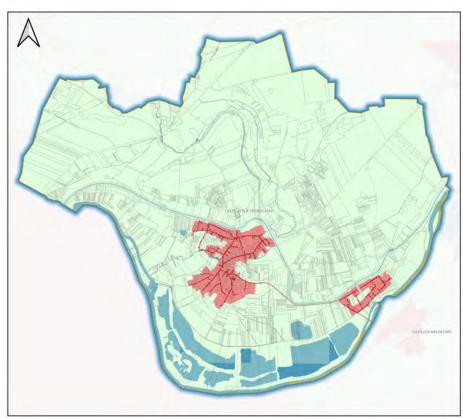
---- refoulement eaux usées


gravitaire unitaire

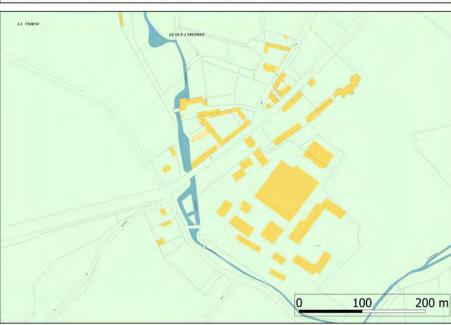

---- refoulement unitaire

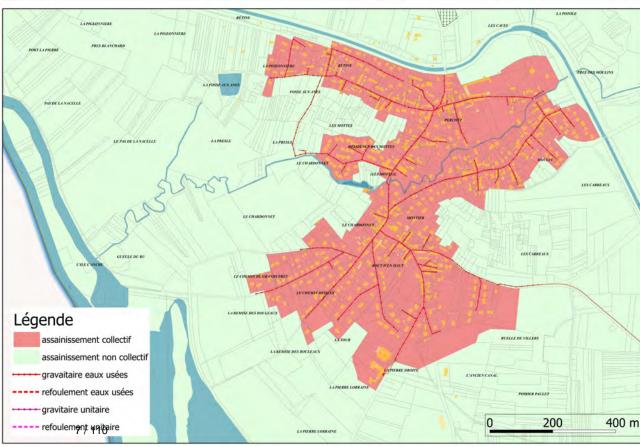
Plan de zonage eaux usées - Cocherel

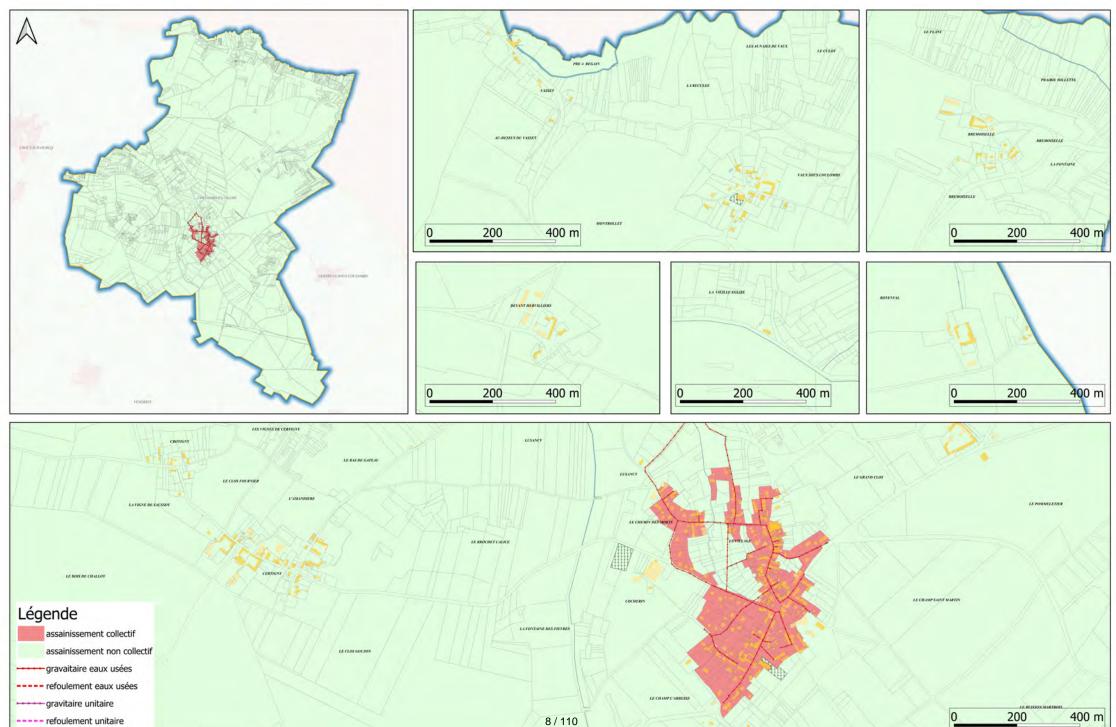
Légende


assainissement collectif
assainissement non collectif
gravaitaire eaux usées

---- refoulement eaux usées

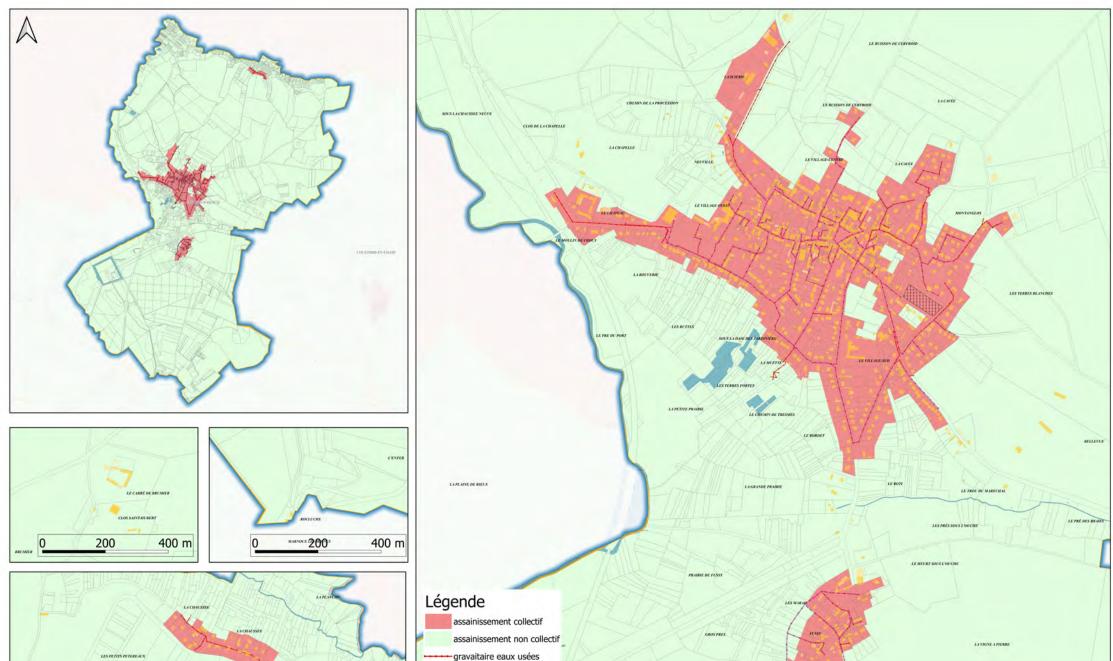

gravitaire unitaire


---- refoulement unitaire



LE CHAMP BLANCHARD

Plan de zonage eaux usées - Coulombs-en-Valois



Plan de zonage eaux usées - Crouy-sur-Ourcq

200

400 m

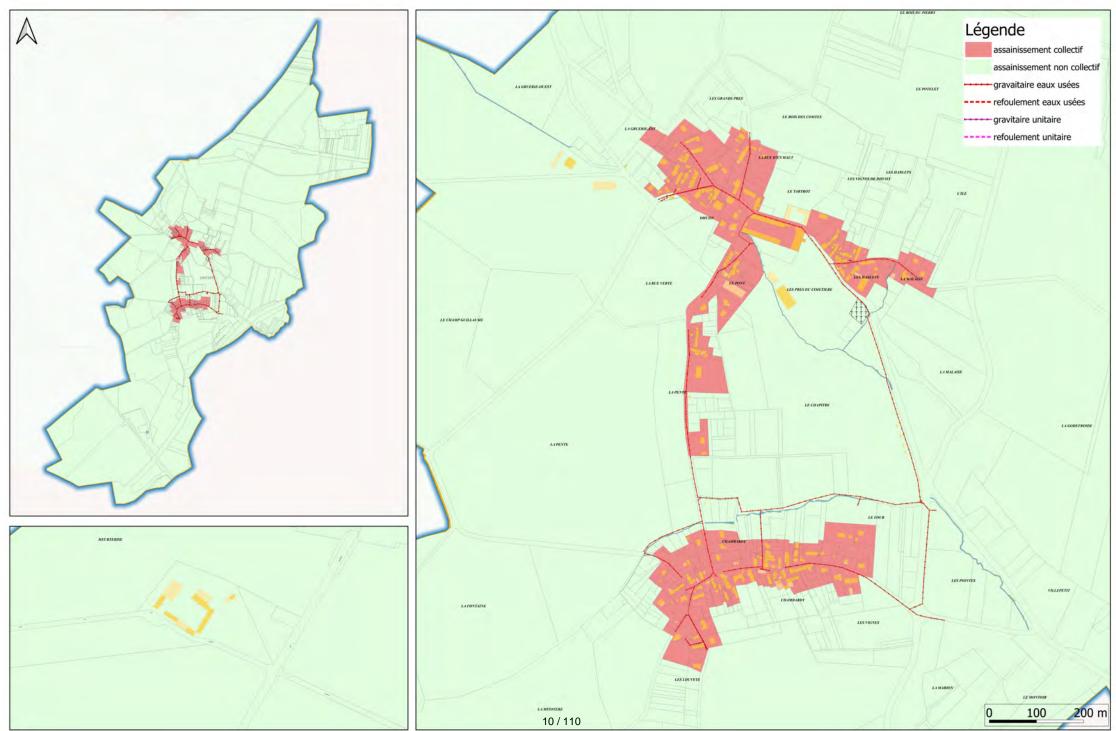
L'AVENUE DE GESTRES

9/110

LES AULNES DE LA MOTTELETTE

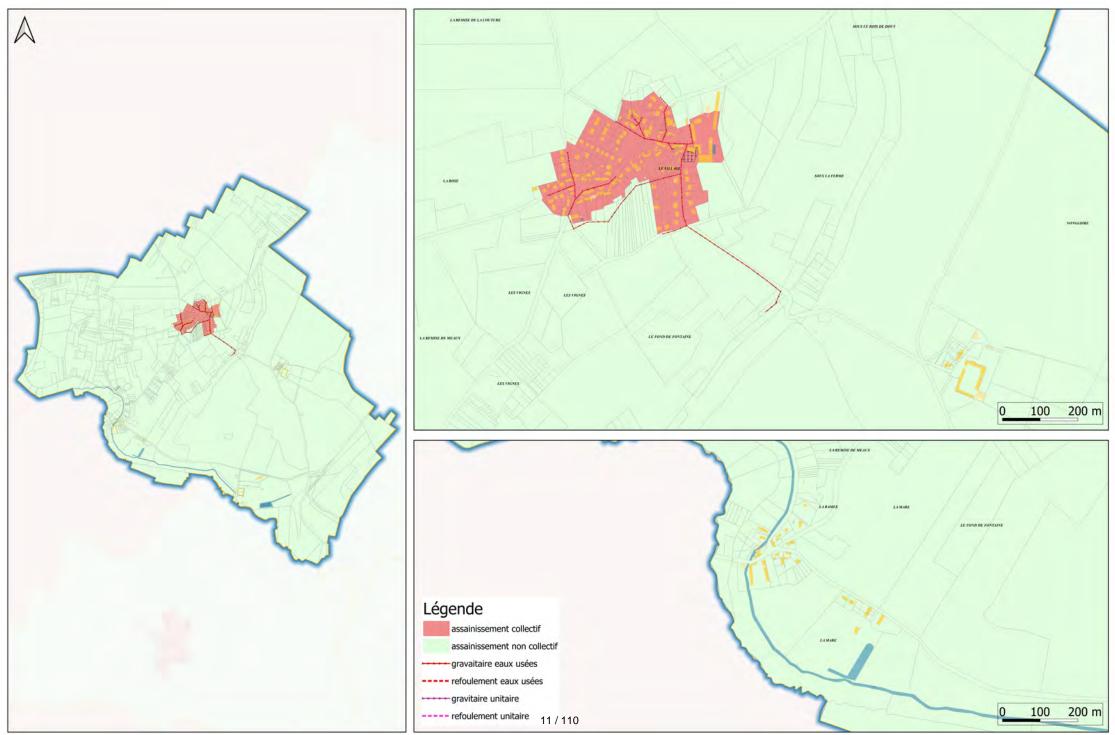
---- refoulement eaux usées

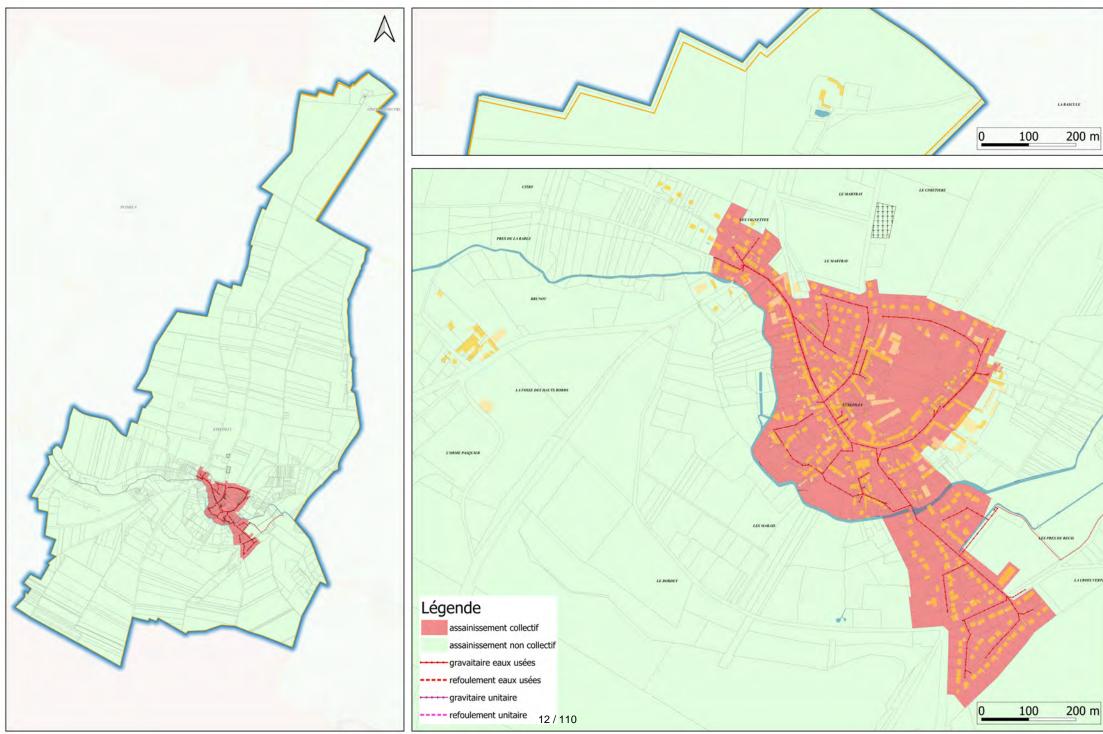
--- refoulement unitaire

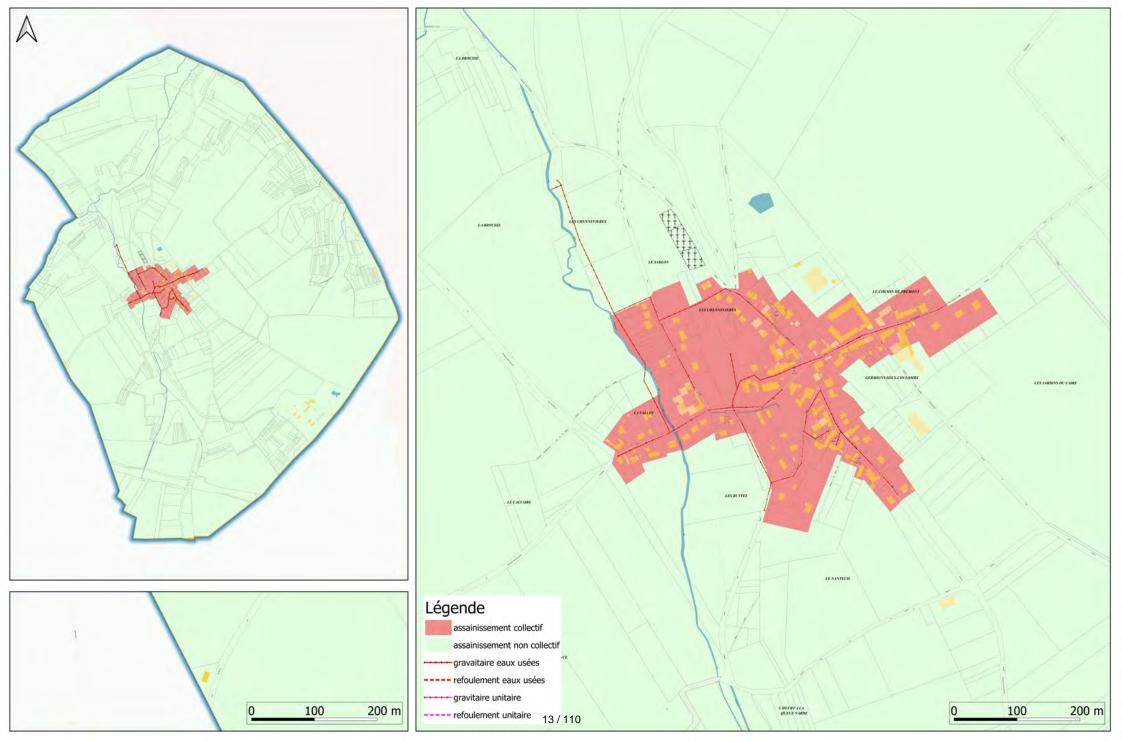

gravitaire unitaire

200

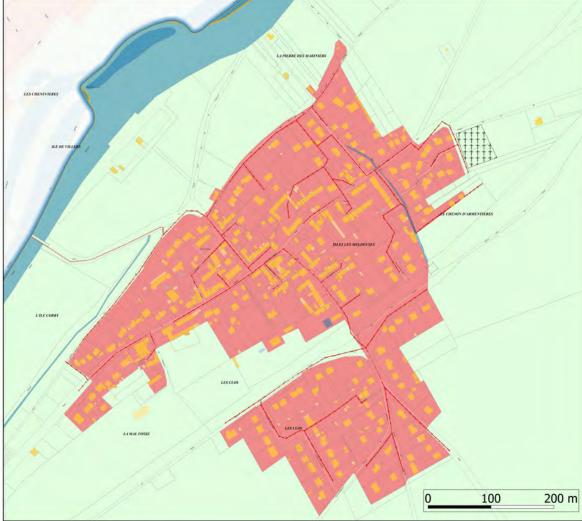
400 m


Plan de zonage eaux usées - Dhuisy

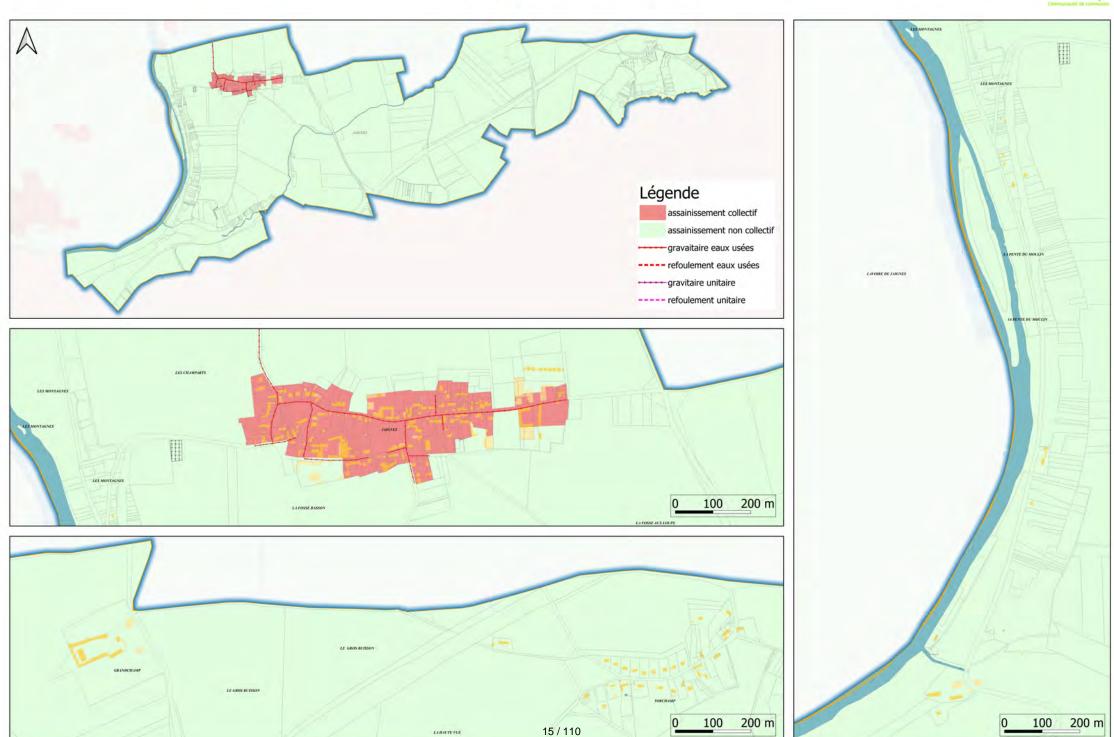

Plan de zonage eaux usées - Douy-la-Ramée

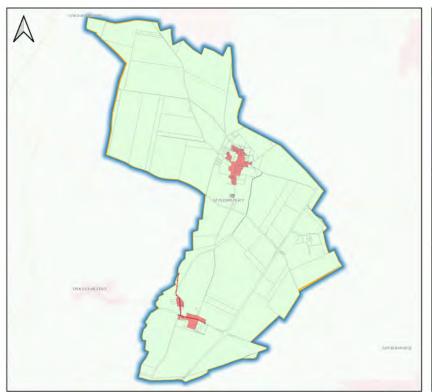

Plan de zonage eaux usées - Etrépilly

Plan de zonage eaux usées - Germigny-sous-Coulombs

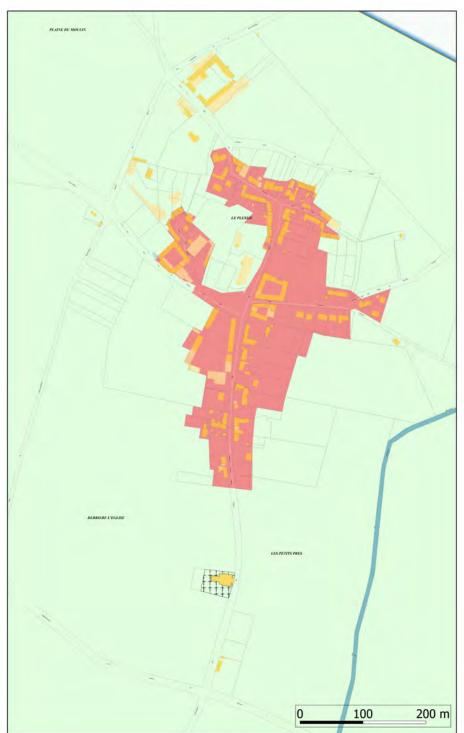


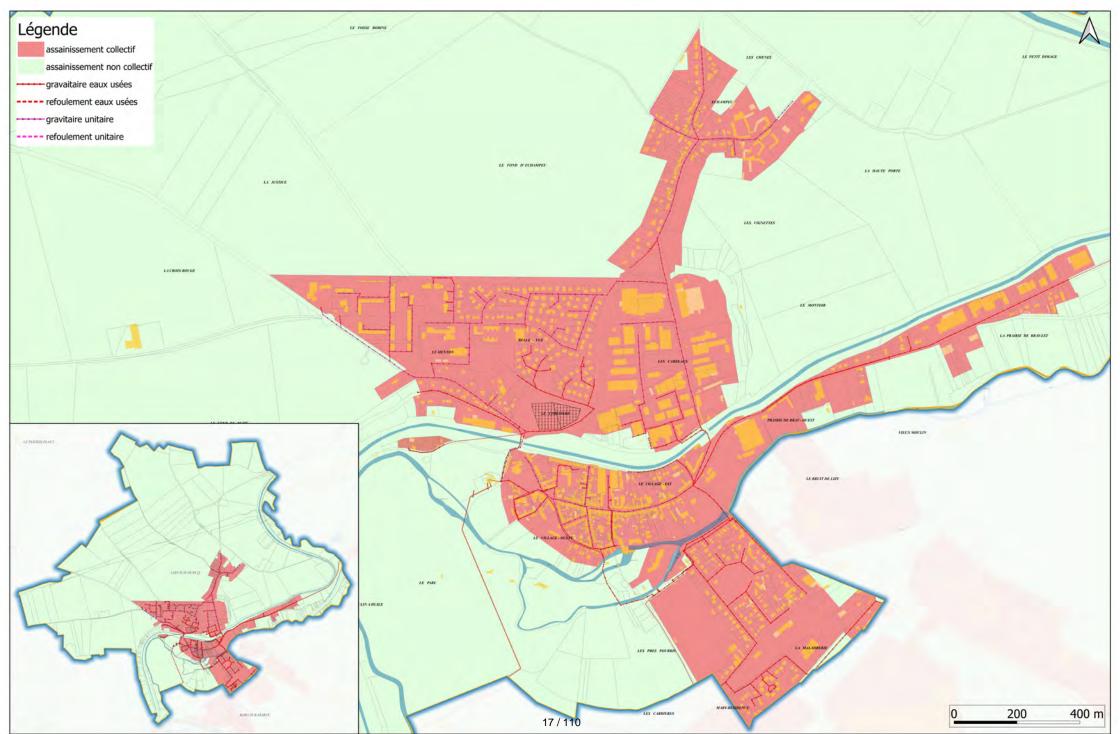
Plan de zonage eaux usées - Isles-les-Meldeuses

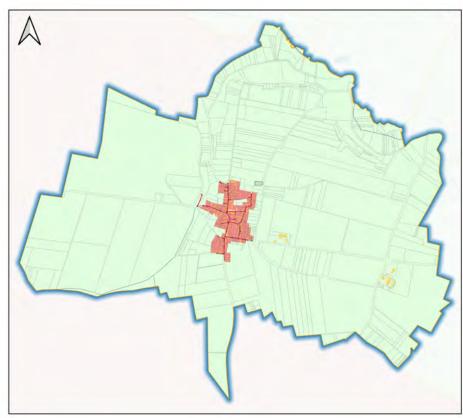


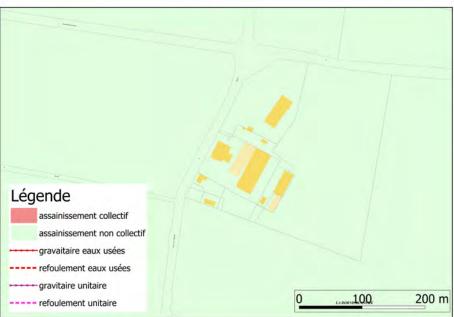

Plan de zonage eaux usées - Jaignes

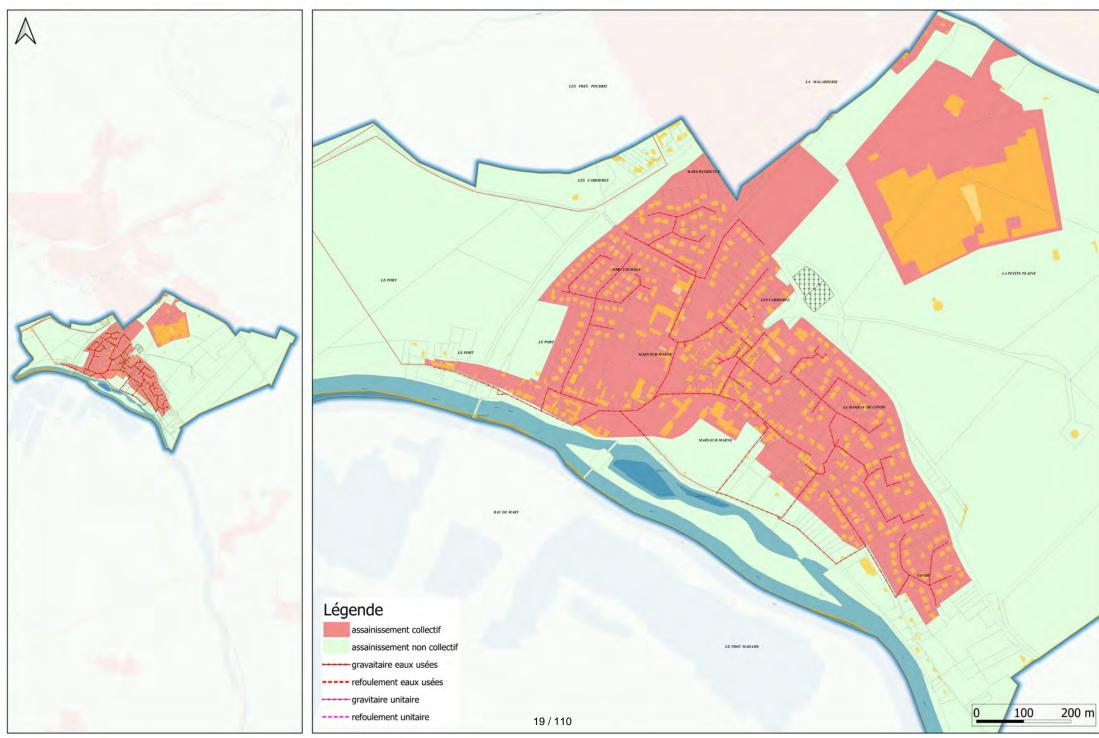


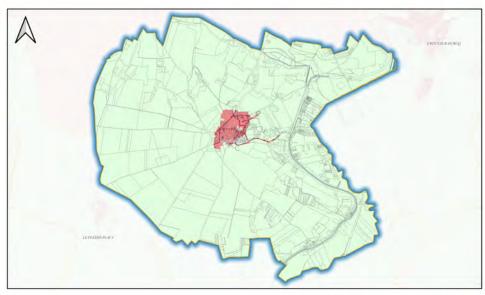

Plan de zonage eaux usées - Le Plessis-Placy

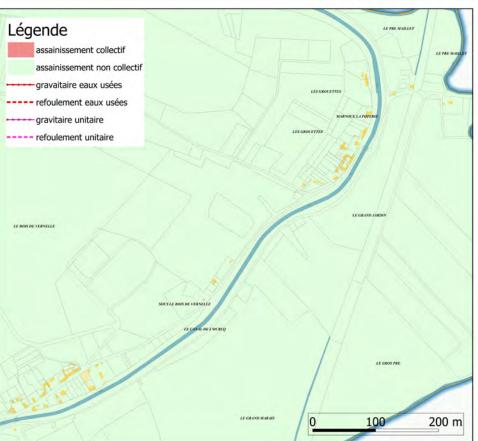




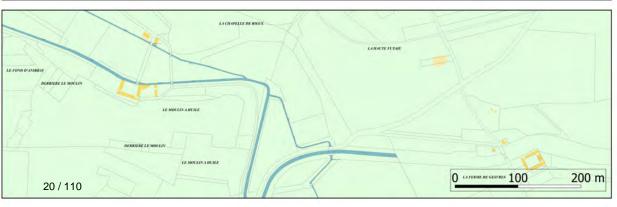


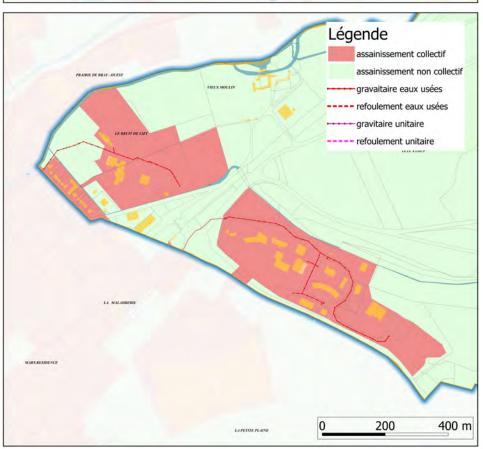



Plan de zonage eaux usées - Mary-sur-Marne






Plan de zonage eaux usées - May-en-Multien

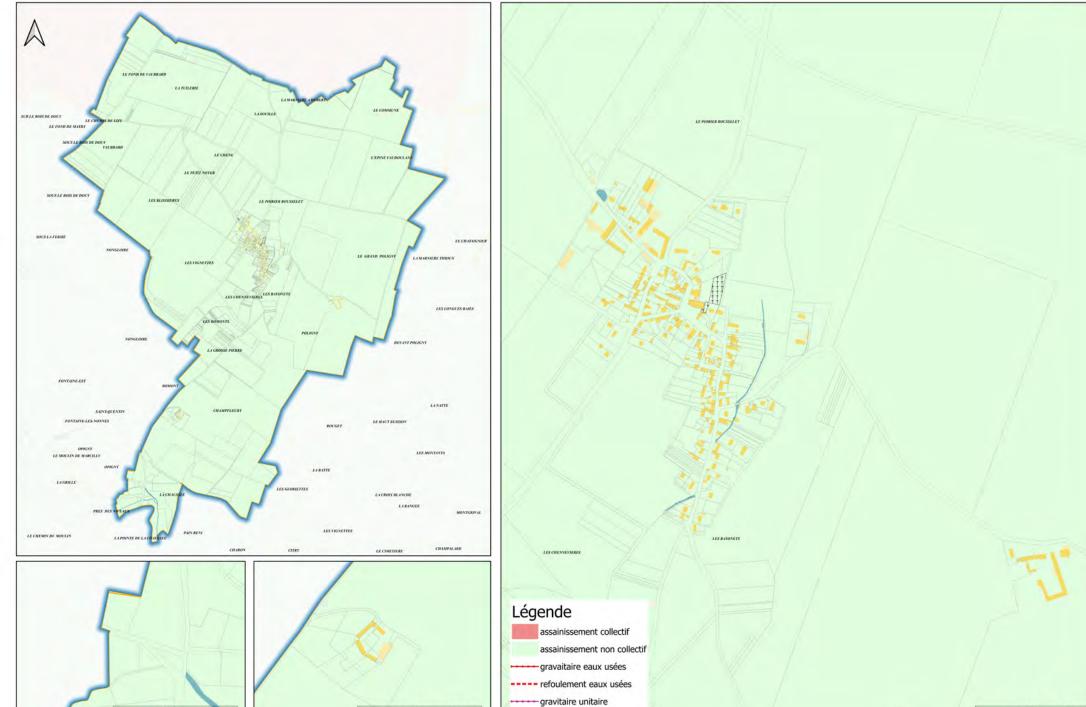


Plan de zonage eaux usées - Ocquerre

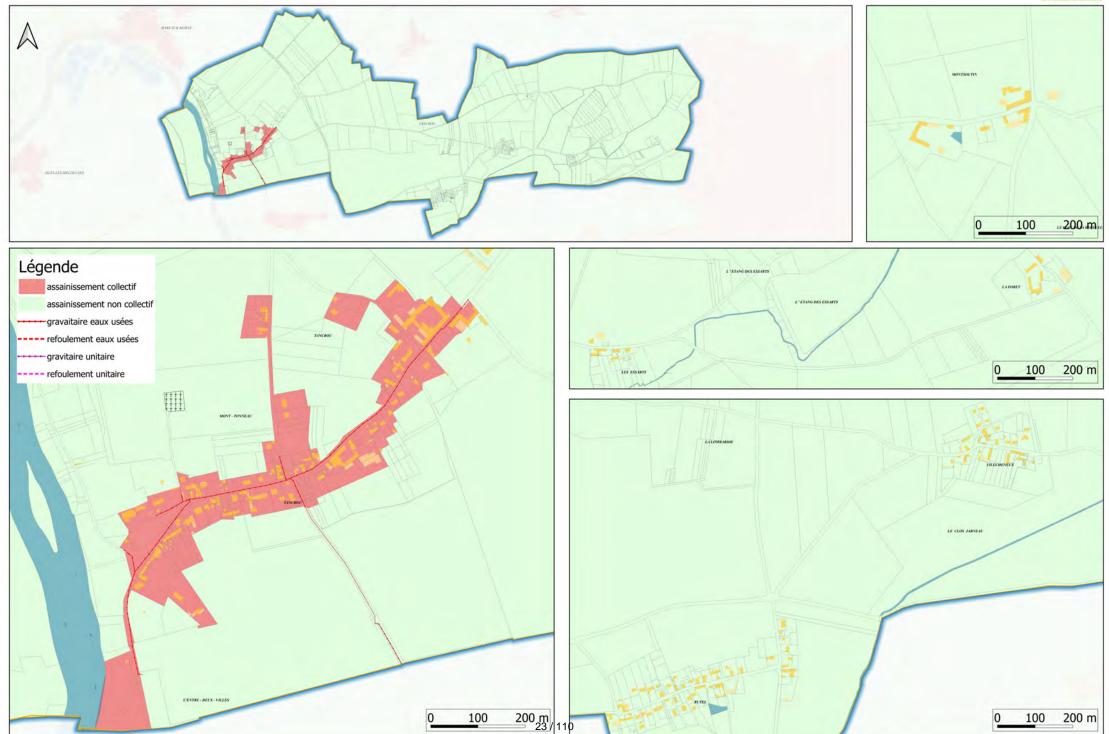
100

200 m

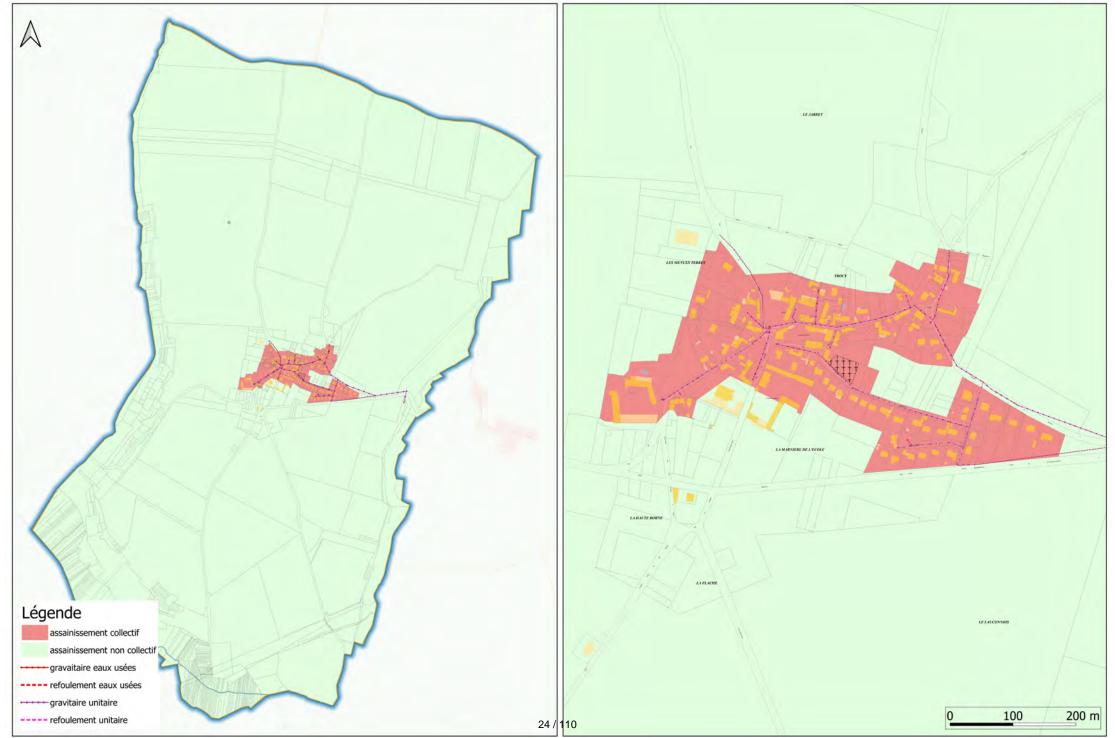
100


200 m

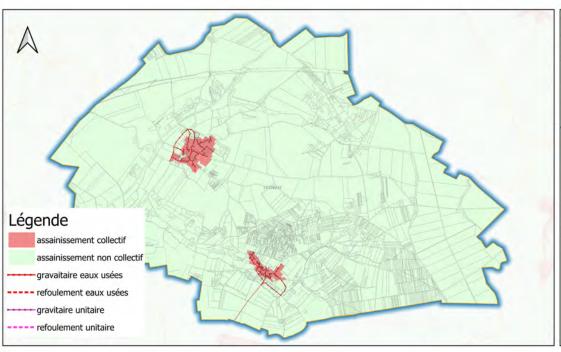
Plan de zonage eaux usées - Puisieux

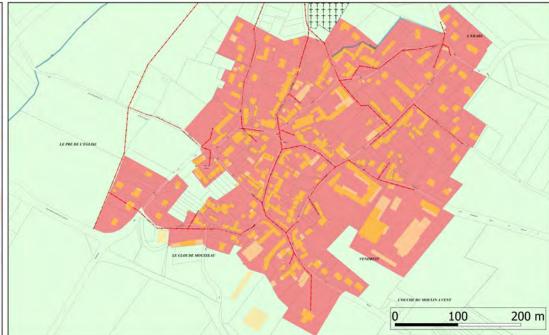

200 m

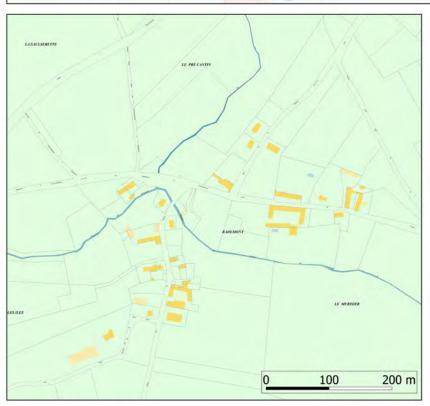
100

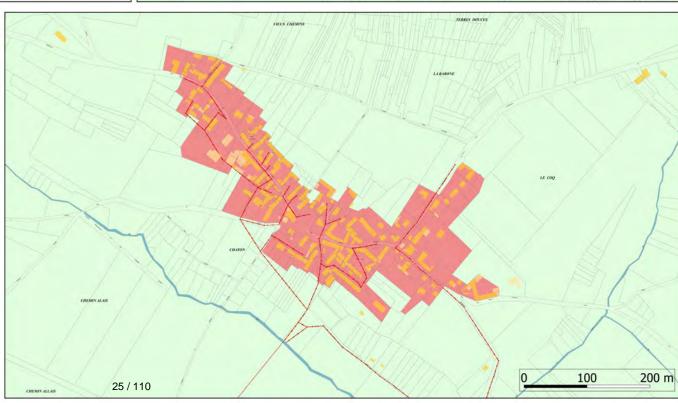


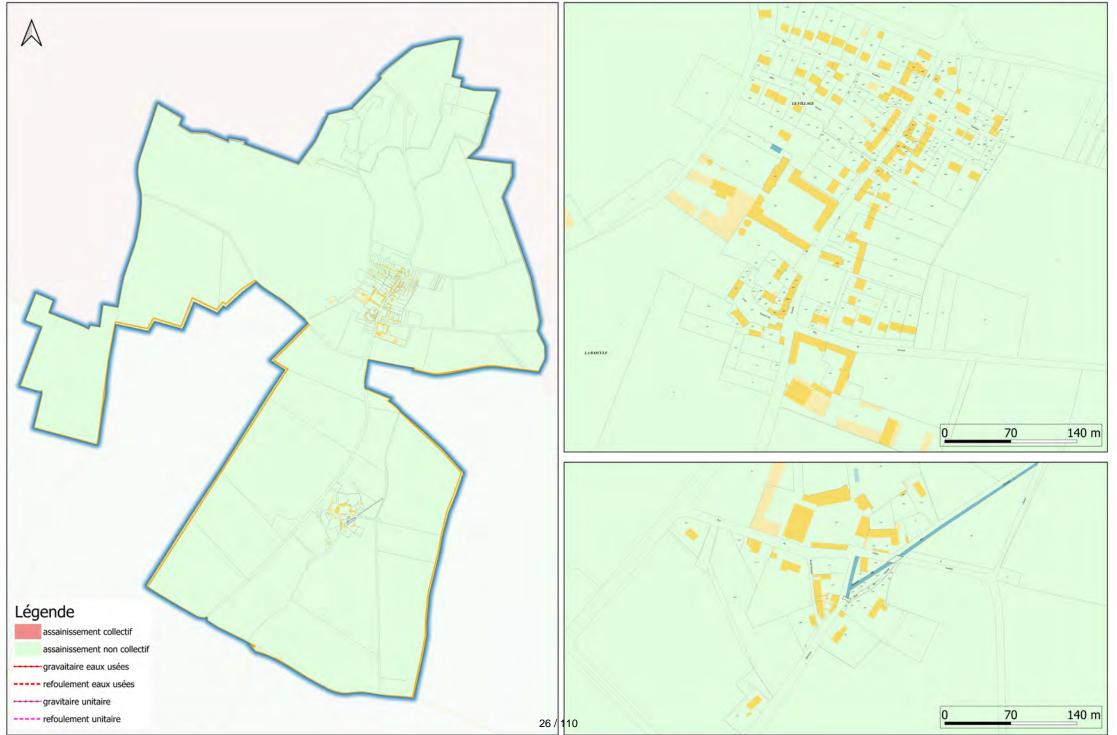
refoulement unitaire

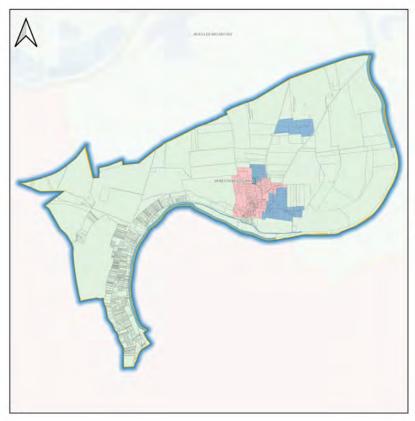






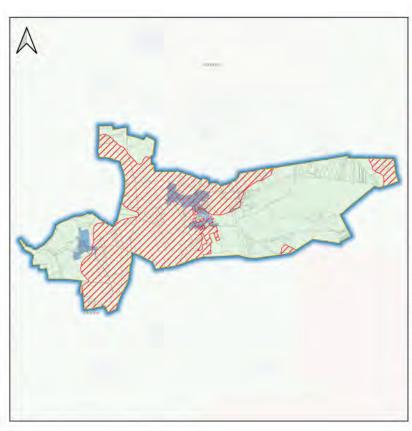

Plan de zonage eaux usées - Vendrest

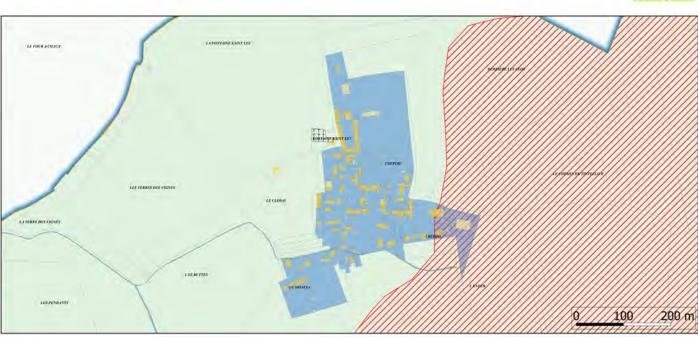


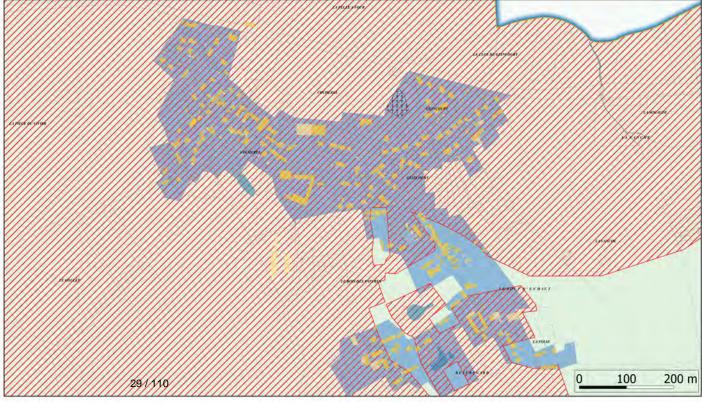



ANNEXE 9: PLANS DE ZONAGE DES EAUX PLUVIALES PAR COMMUNE ET NOTICE

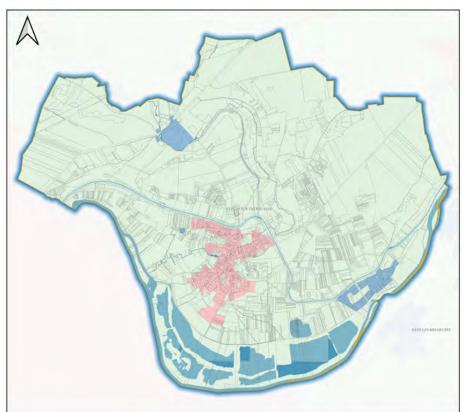
Plan de zonage eaux pluviales - Armentières-en-Brie


Légende


faibles contraintes fortes contraintes

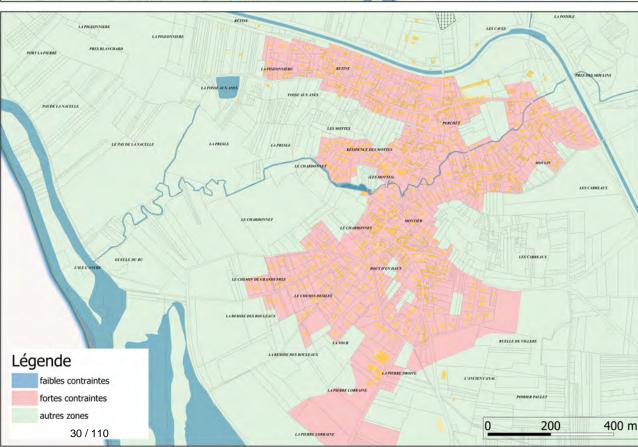

autres zones

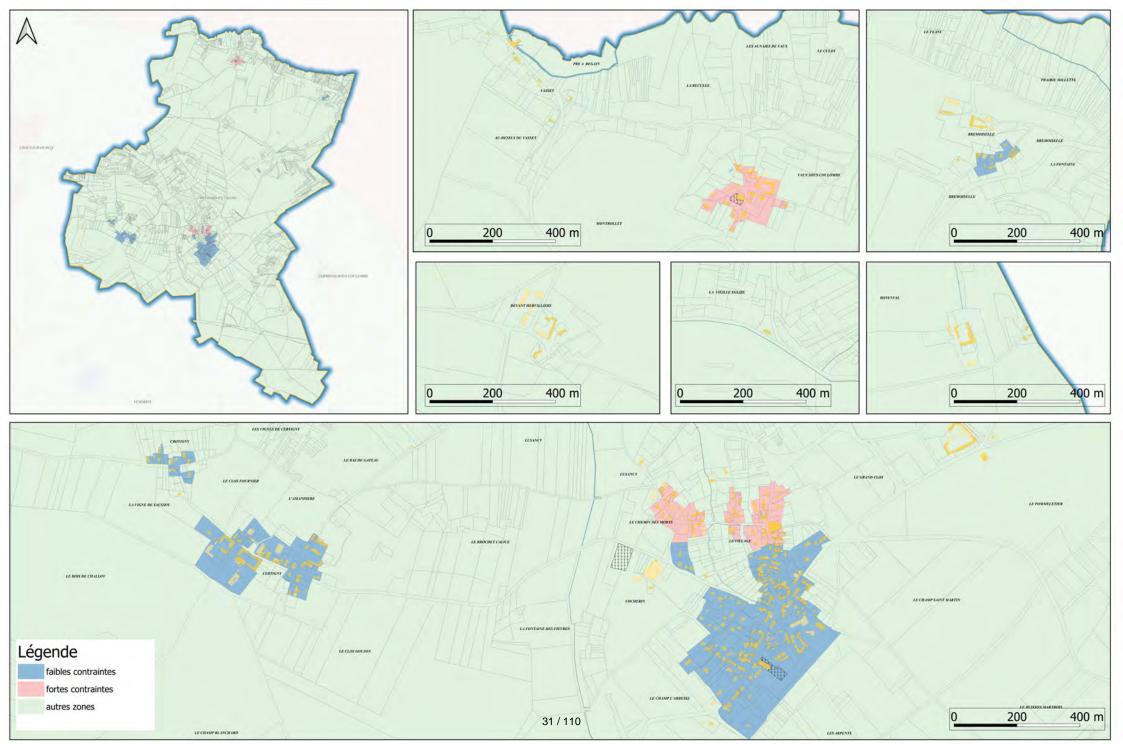
Plan de zonage eaux pluviales - Cocherel


Légende

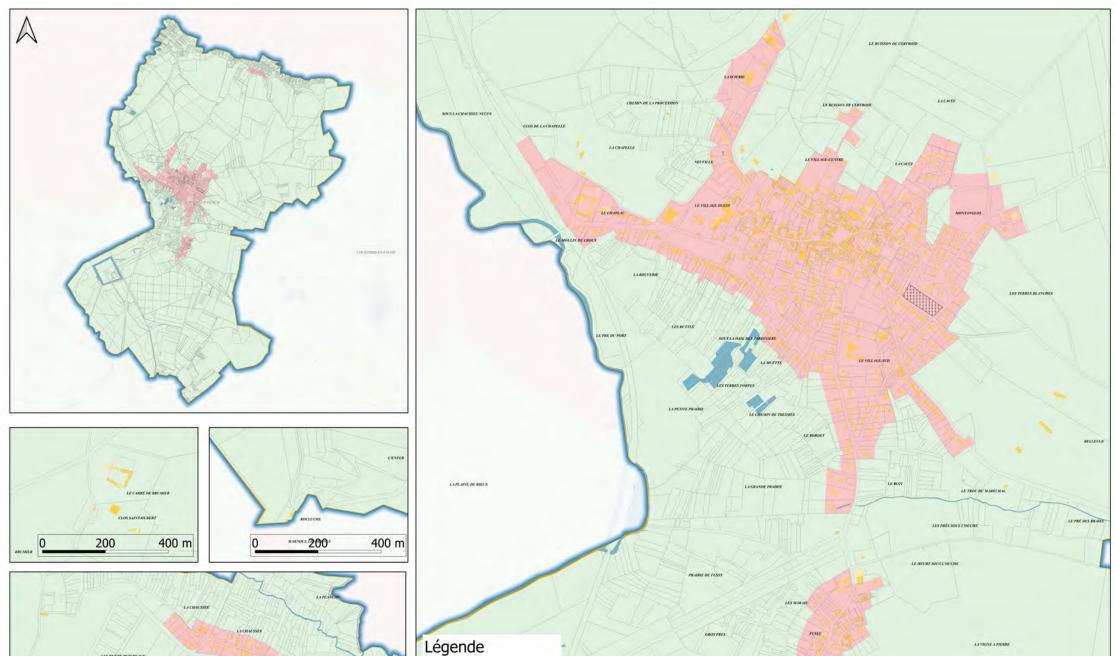
faibles contraintes

fortes contraintes autres zones


création de puisard ou puits d'infiltration interdite (PPR)



Plan de zonage eaux pluviales - Coulombs-en-Valois



Plan de zonage eaux pluviales - Crouy-sur-Ourcq

200

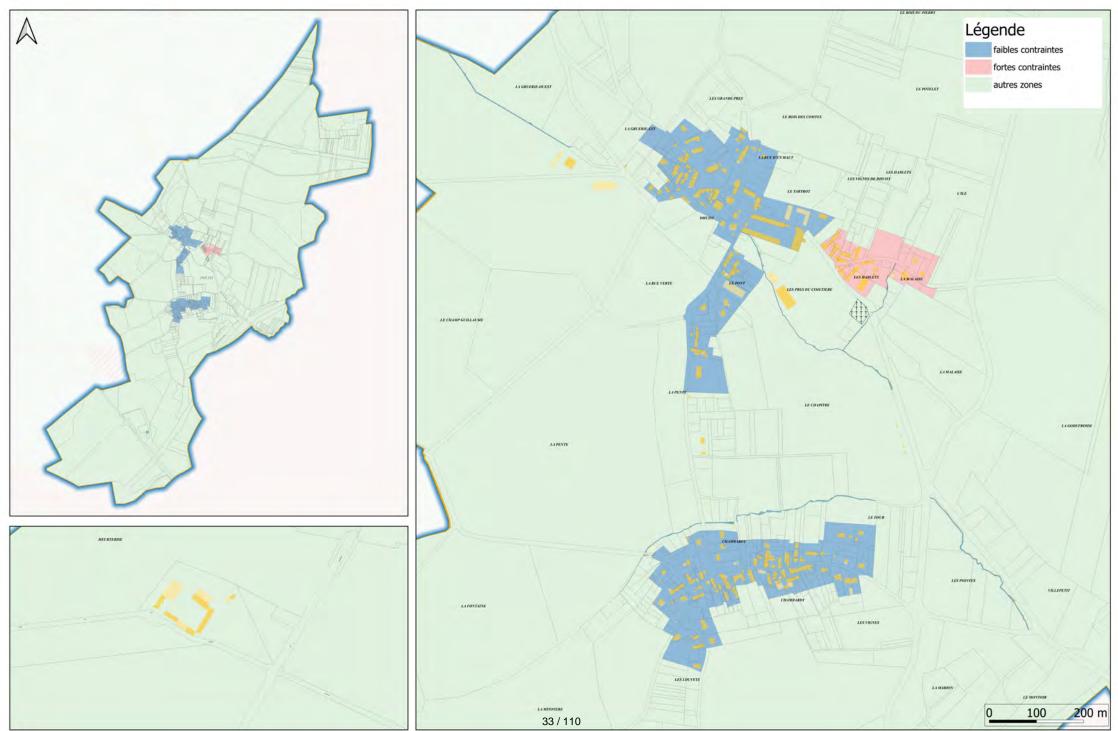
400 m

L'AVENUE DE GESTRES

32 / 110

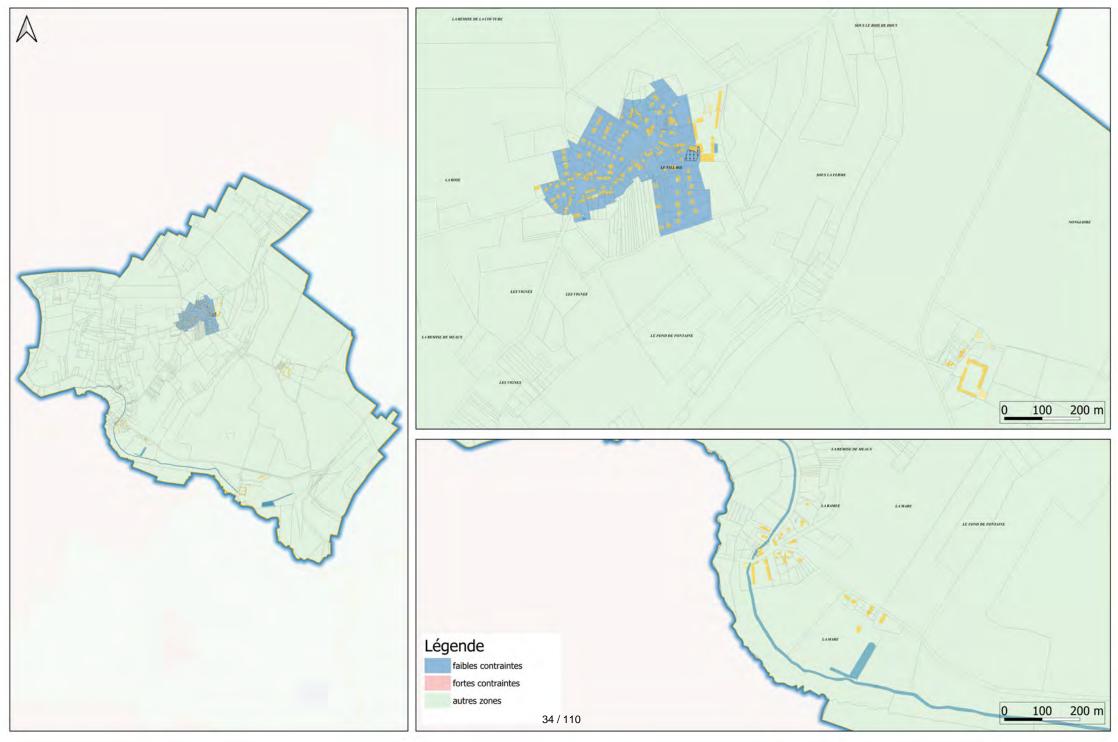
LES AULNES DE LA MOTTELETTE

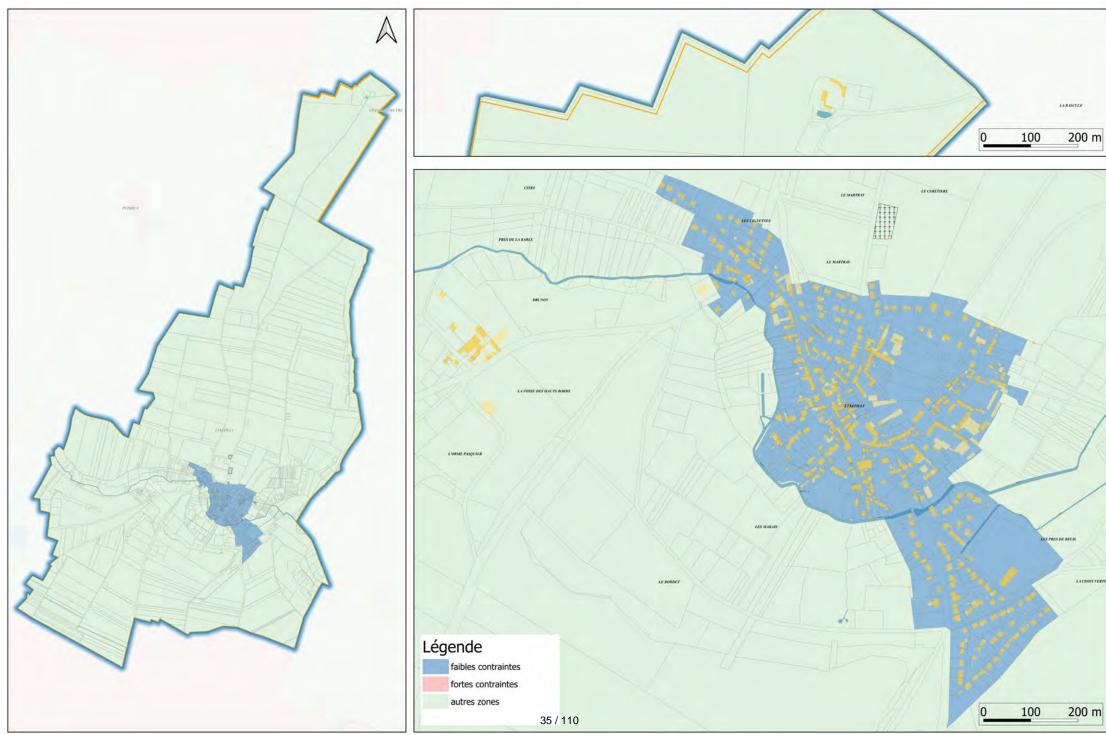
faibles contraintes fortes contraintes


autres zones

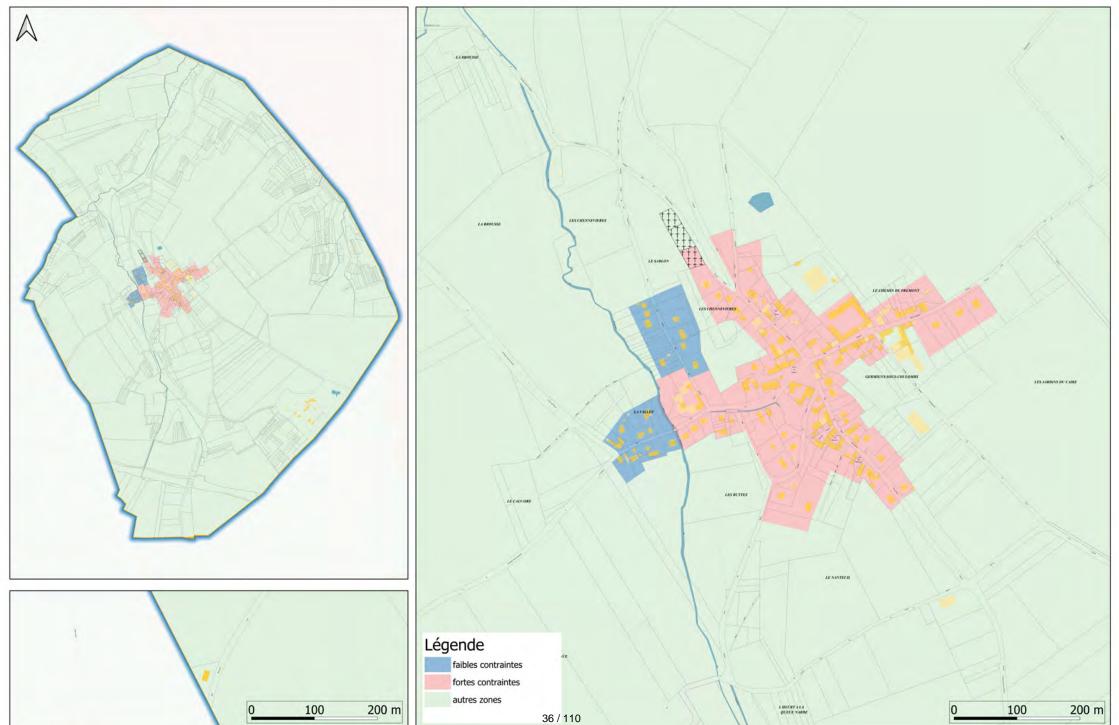
200

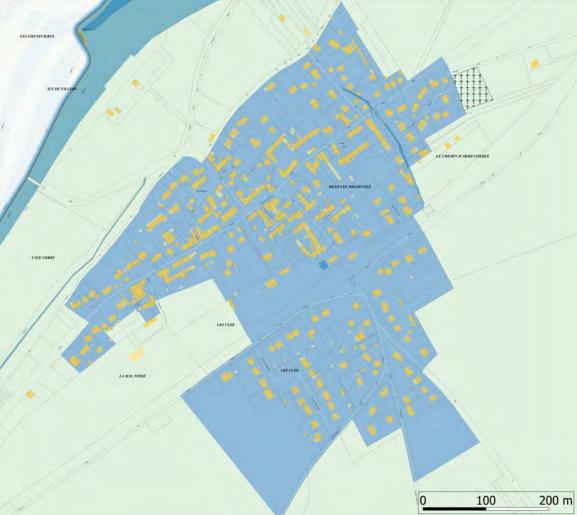
400 m

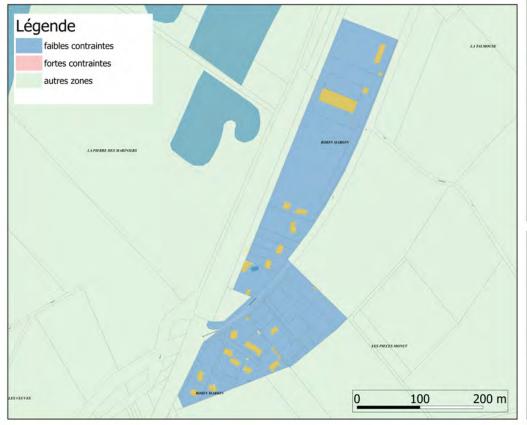

Plan de zonage eaux pluviales - Dhuisy

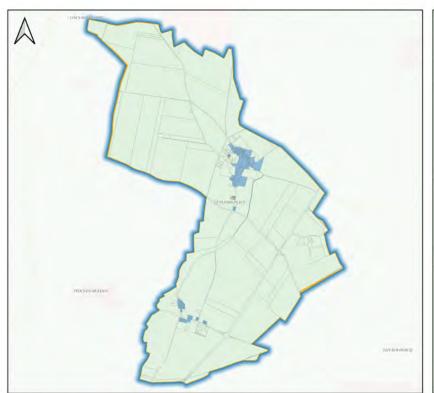


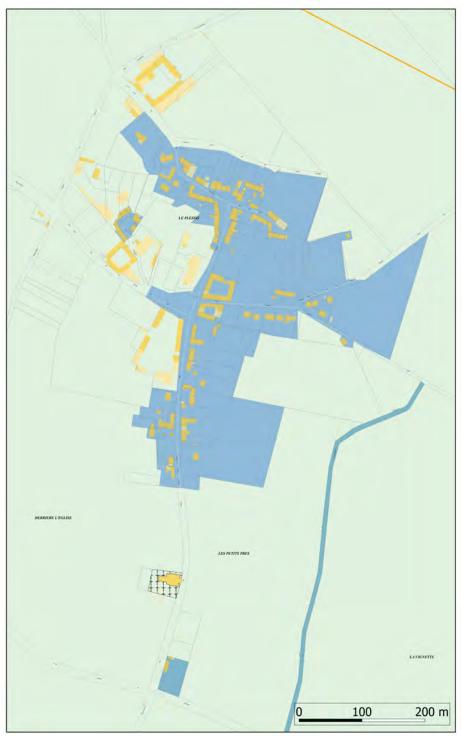
Plan de zonage eaux pluviales - Douy-la-Ramée

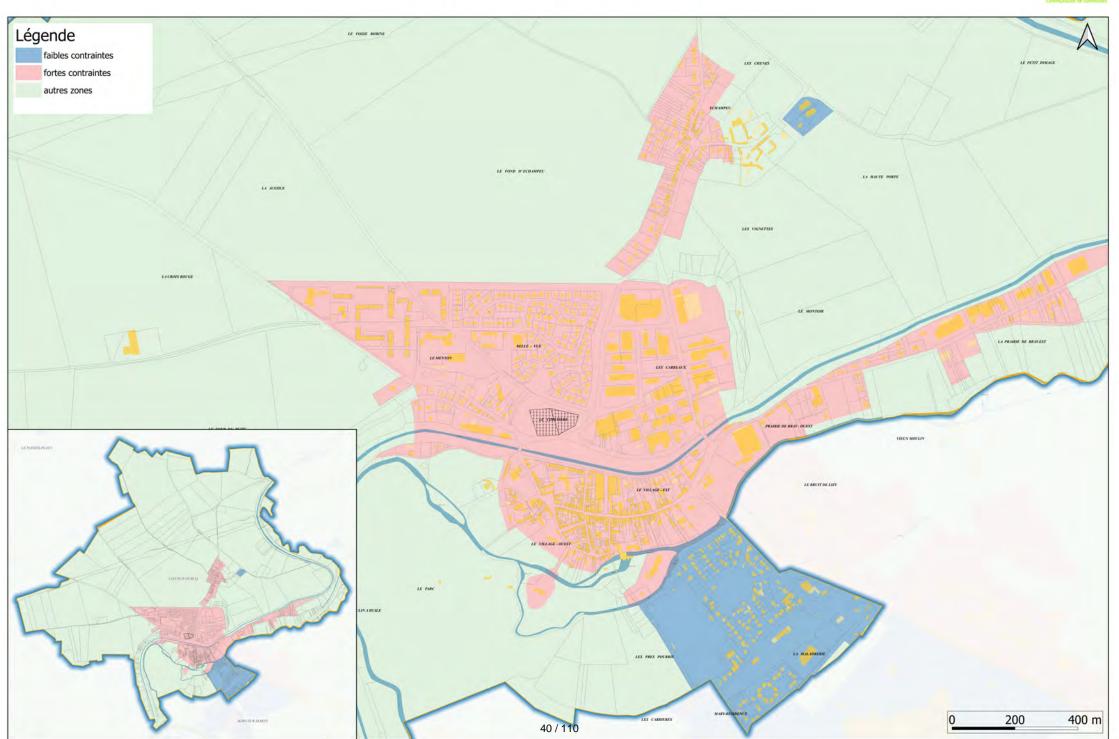


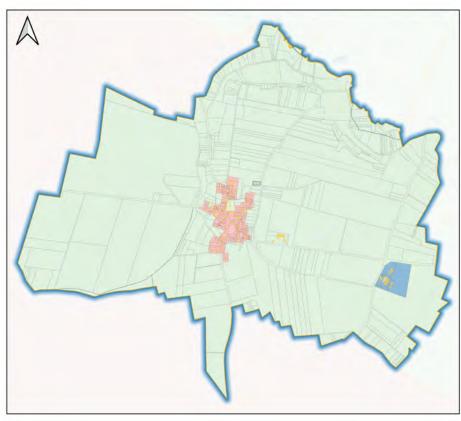




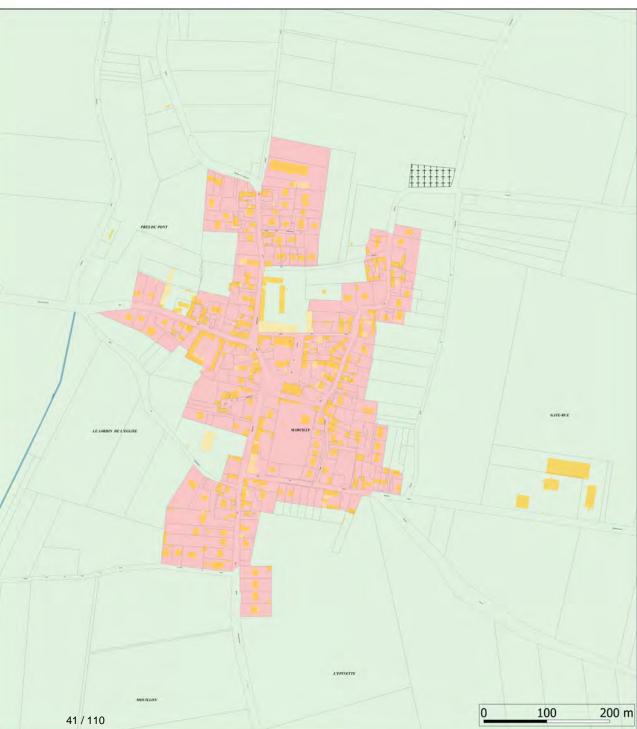

Plan de zonage eaux pluviales - Jaignes

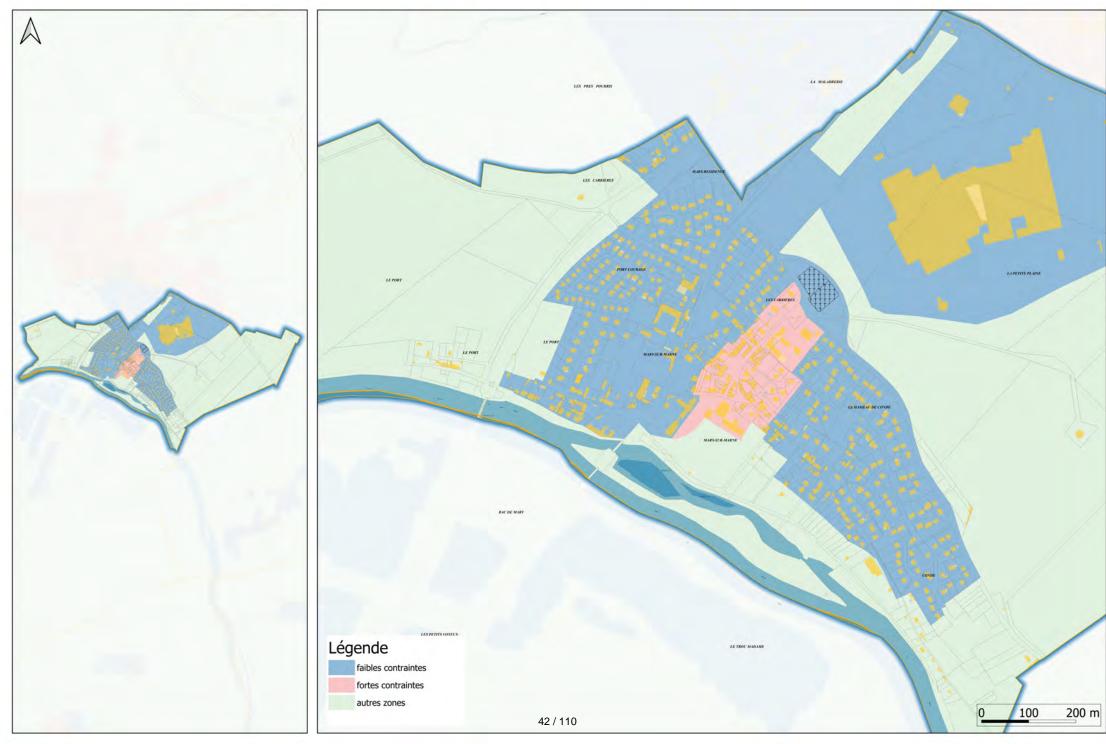

Plan de zonage eaux pluviales - Le Plessis-Placy

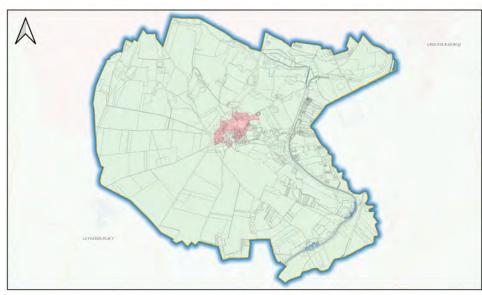


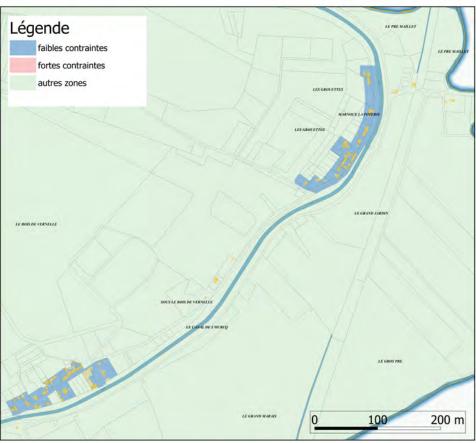


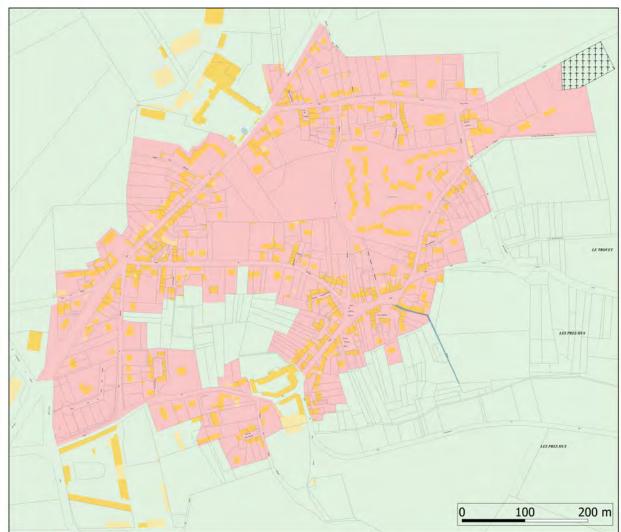
Plan de zonage eaux pluviales - Lizy-sur-Ourcq

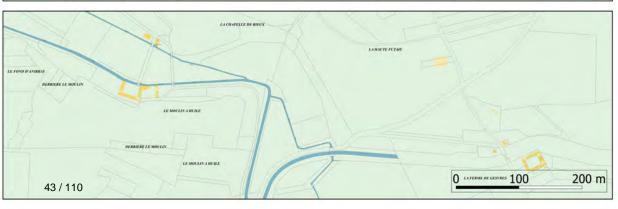


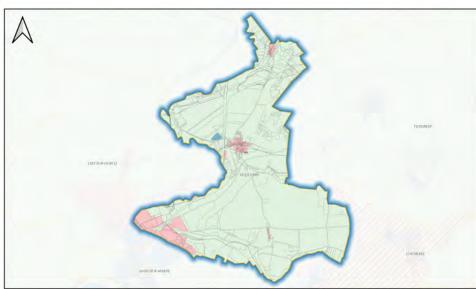


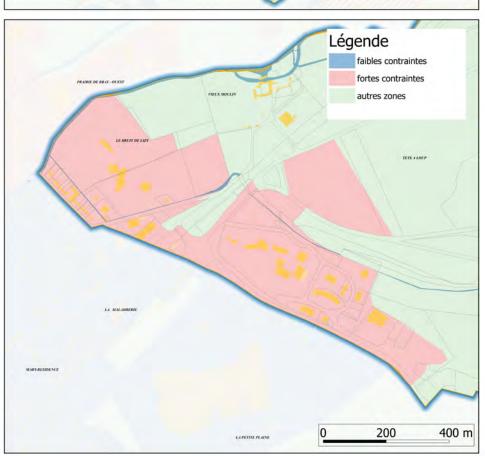

Plan de zonage eaux pluviales - Mary-sur-Marne






Plan de zonage eaux pluviales - May-en-Multien

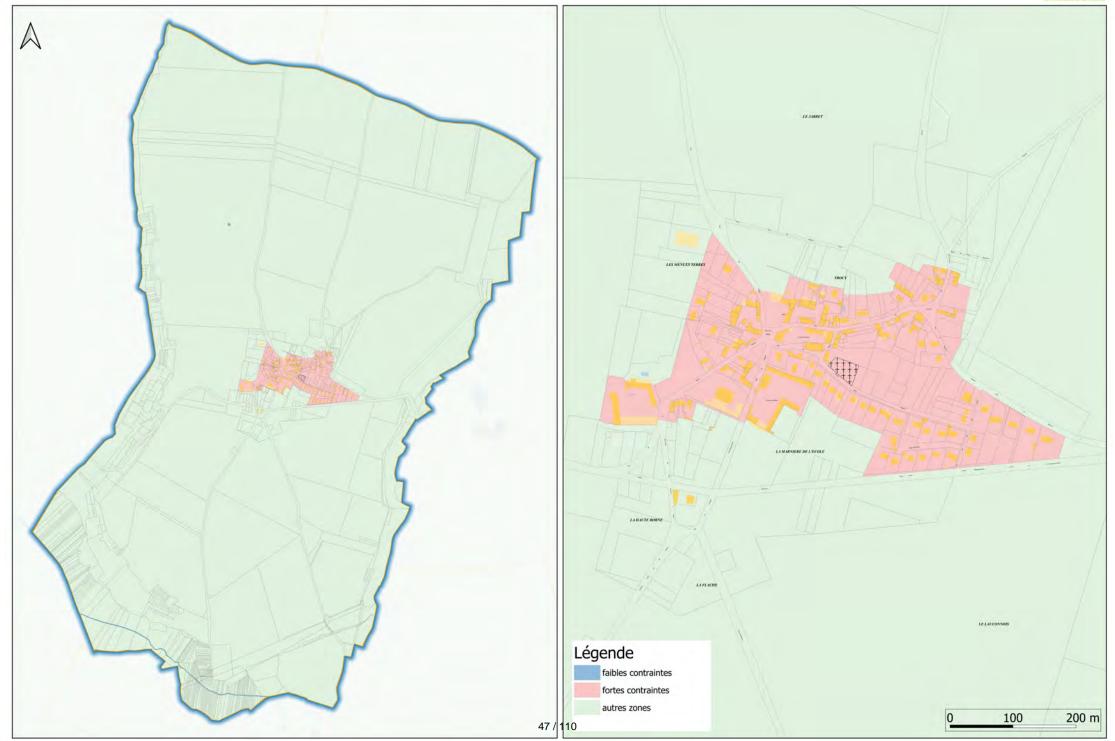


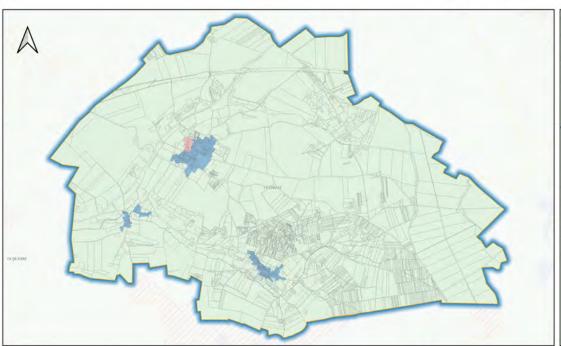


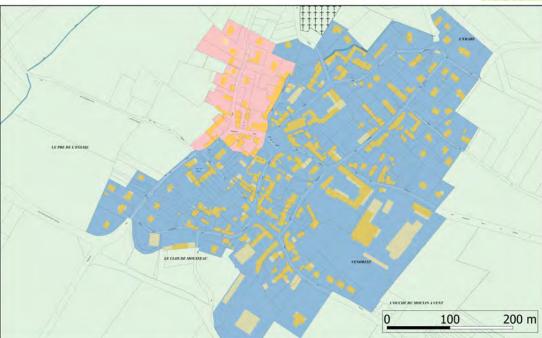
Plan de zonage eaux pluviales - Ocquerre

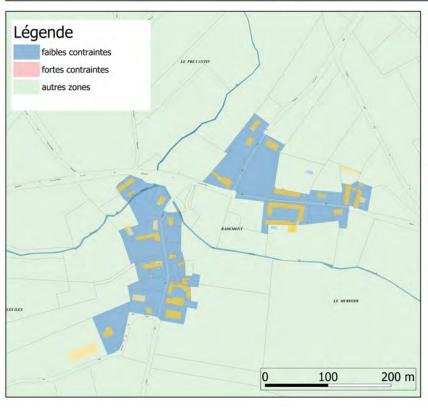


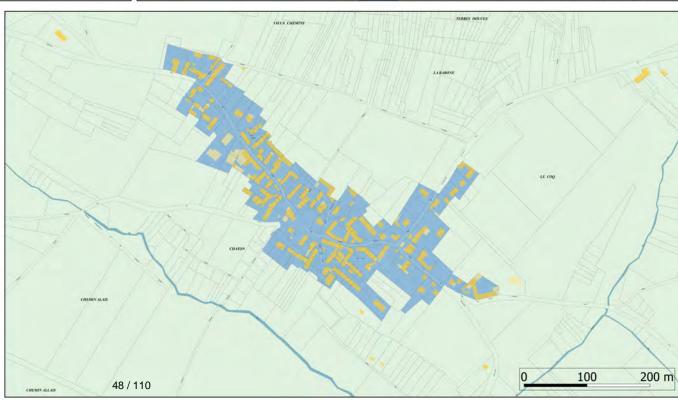











Plan de zonage eaux pluviales - Vendrest

Communauté de Communes du Pays de l'Ourcq

Schéma directeur d'assainissement : projet de zonage pluvial

Notice technique liée au règlement du zonage pluvial

47802 | avril 2024 - v3 | WRL

Bâtiment Octopus 11 rue Georges Charpak 77127 Lieusaint

Courriel:

hydratec.lieusaint@hydra.setec.fr

T: 01 79 01 51 30 F: 01 64 13 99 32

Directeur de Projet	EOM
Responsable d'affaire	WRL
N° Affaire	47802

Fichier: 47802_notice_zonage_EP_v4.docx

V.	Date	Etabli par	Vérifié par	Nb. pages	Observations / Visa
V1	Septembre 2022	WRL	WRL	43	Première émission
V2	Novembre 2022	WRL	WRL	6061	Compléments suite remarques de la CCPO
V3	Avril 2024	WRL	WRL	61	Corrections suite remarques de la CCPO

TABLE DES MATIERES

1.	OBJ	ET D	E LA NOTICE	6
2.	LA G	SEST	ION DES EAUX PLUVIALES	7
	2.1	Prin	cipes	7
	2.2	La g	estion sur le territoire de la collectivité	9
3.	MET	HOD	OLOGIE DE GESTION	12
	3.1	Cara	actériser le contexte	12
	3.1	.1	Examen du terrain	12
	3.1	.2	Rappels des capacités limites à l'infiltration	12
	3.1	.3	Pratiques de détermination de l'infiltration du sol	12
	3.1	.4	Secteurs où l'infiltration est déconseillée ou proscrite	13
	3.1	.5	Surface de la parcelle et surface active	13
	3.2	Dim	ensionner les solutions	16
	3.2	2.1	Remarque	16
	3.2	2.2	Pluie de dimensionnement	16
	3.2	2.3	Détermination du débit de fuite	17
	3.2	2.4	Calcul du volume de stockage	18
	3.3	Prét	raitement spécifique	23
	3.3	3.1	Prétraitement des dépôts dits sableux	23
	3.3	3.2	Prétraitement des huiles et hydrocarbures	24
	3.4		tion des eaux pluviales sur les parcelles agricoles	
	3.5	Valid	dation du projet par la collectivité	26
	3.6	Réa	liser les travaux et entretenir	26
4.	PRE	SEN	TATION DES TECHNIQUES ALTERNATIVES	27
	4.1	Stru	ctures poreuses	27
	4.2	Nou	es et fossés	29
	4.3	Trar	nchées drainantes ou infiltrantes	31
	4.4	Puits	s d'infiltration	33
	4.5	Mar	es et bassins	35
	4.6	Cuv	es et citernes	38
	4.7	Toitu	ures stockantes	40
	4.8	Rég	ulateurs de débit	43
	4.9	Com	nbiner les techniques	44

ANNEXES

Annexe 1

Courbes hauteur – durée – fréquence pour les durées supérieures à 2h

Annexe 2

Courbes hauteur – durée – fréquence pour les durées inférieures à 2h

Annexe 3

Tableaux d'aide au calcul du volume d'eau à stocker

Annexe 4

Exemple de dimensionnement

1. OBJET DE LA NOTICE

Cette notice technique est réalisée dans le cadre du renouvellement des zonages d'assainissement eaux usées et eaux pluviales des communes de la Communauté de Communes du Pays de l'Ourcq (CCPO).

Ce document est une partie du dossier d'enquête publique liée aux zonages. Dans ce cadre, sa lecture doit être mise en relation avec les règles et plans de zonages présentés dans les autres documents du dossier d'enquête publique.

L'objet de cette notice est de fournir des outils pour la mise en pratique de la gestion des eaux pluviales sur l'ensemble du territoire. La collectivité se réserve le droit d'exiger des mesures complémentaires à celles présentées pour l'instruction des dossiers. Les motifs de ces demandes complémentaires seront précisés par la collectivité pour favoriser la cohérence des projets proposés.

Dans un premier temps sont rappelés les grands principes du cycle de l'eau et les objectifs de la gestion des eaux pluviales.

Dans un second temps sont présentés un ensemble des techniques pour gérer les eaux pluviales à la parcelle.

Enfin sont détaillés des méthodes de dimensionnement pour la proposition d'ouvrages de gestions des eaux pluviales.

En annexe sont présentés les graphiques et tableaux d'aide au dimensionnement.

2. LA GESTION DES EAUX PLUVIALES

2.1 PRINCIPES

Les eaux pluviales sont issues des précipitations atmosphériques. Une fois tombée, une partie de cette eau s'infiltre dans les sols pour recharger les nappes phréatiques tandis que le reste ruisselle pour rejoindre les milieux naturels (rivières, étangs, lacs, mers et océans). Les milieux naturels vont à leur tour être à l'origine des nuages via l'influence du climat.

L'ensemble de ces phénomènes régissent le cycle de l'eau.

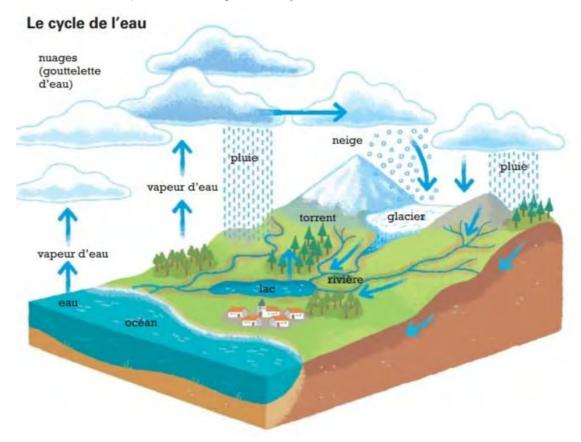


Figure 2.1 : Cycle de l'eau

Aujourd'hui, l'anthropisation des territoires a un impact significatif sur le cycle de l'eau. L'imperméabilisation des sols par les constructions, les parkings et les rues diminue la part infiltrée et augmente le ruissellement. Les conséquences sur l'environnement sont multiples :

- Une diminution de la recharge des nappes phréatiques : Les eaux ruisselées rejoignent des milieux superficiels plutôt que les ressources souterraines ;
- Une multiplication des inondations : le volume d'eau ruisselé est de plus en plus important et se concentre en surface ou fait déborder les réseaux d'assainissement.
- L'augmentation des risques de pollution : Le ruissellement lessive les sols et va charrier les pollutions humaines vers les milieux naturels (particules fines, hydrocarbures en ville, engrais et pesticides en milieu agricole). Cette pollution rompt l'équilibre de la biodiversité de ces milieux.

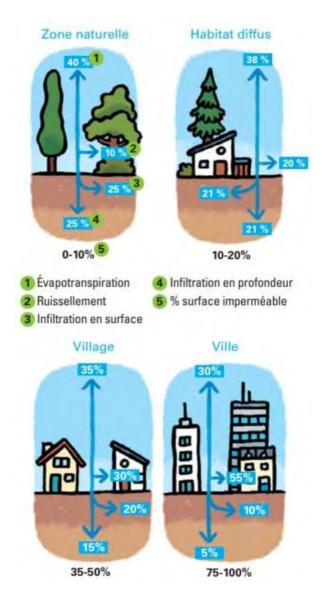


Figure 2.2 : Répartition de l'eau de pluie en fonction de l'occupation des sols

Face à ces constats, la gestion historique des eaux pluviales en milieu anthropisée était le « **tout-à-l'égout** ». Ce mode de gestion répond au principe d'une évacuation le plus vite et le plus loin possible des eaux de toutes natures (eaux usées et ruissellement pluvial).

Cette gestion a montré ses limites avec :

- l'augmentation de la taille des réseaux d'assainissement, conséquence de l'augmentation de la taille des villes et des rejets ;
- l'augmentation des rejets polluants vers les milieux naturels, pour éviter les débordements des réseaux et des stations d'épuration lors des orages par exemple.

Une première évolution a consisté à mettre en place des réseaux dits séparatifs. Ces réseaux couplés collectent d'un côté les eaux usées, de l'autre les eaux pluviales. Cette solution permet de diminuer les effets négatifs du tout-à-l'égout mais conserve les effets négatifs de l'anthropisation (concentration des volumes, diminution de l'infiltration...).

La collectivité a donc décidé de se tourner vers la gestion à la parcelle des eaux pluviales via des techniques alternatives.

Cette gestion permet de gérer la source des impacts plutôt que leurs conséquences via les principes suivants :

- Gérer à la source les eaux pluviales, avant qu'elles se concentrent et ruissellent ;
- Favoriser l'infiltration sur place dès que le contexte le permet.

2.2 LA GESTION SUR LE TERRITOIRE DE LA COLLECTIVITE

La gestion à la parcelle est obligatoire sur l'ensemble du territoire pour toute extension, nouvelle construction ou reconstruction.

La gestion à la parcelle implique la gestion de l'intégralité des eaux pluviales sans aucun rejet en dehors de la parcelle.

Le zonage d'assainissement pluvial sectorise le territoire en **zones**. Chaque parcelle est donc située dans une **zone** régie par un règlement particulier.

A la suite des conclusions du schéma directeur d'assainissement, 3 types de zones ont été définies sur l'ensemble du territoire :

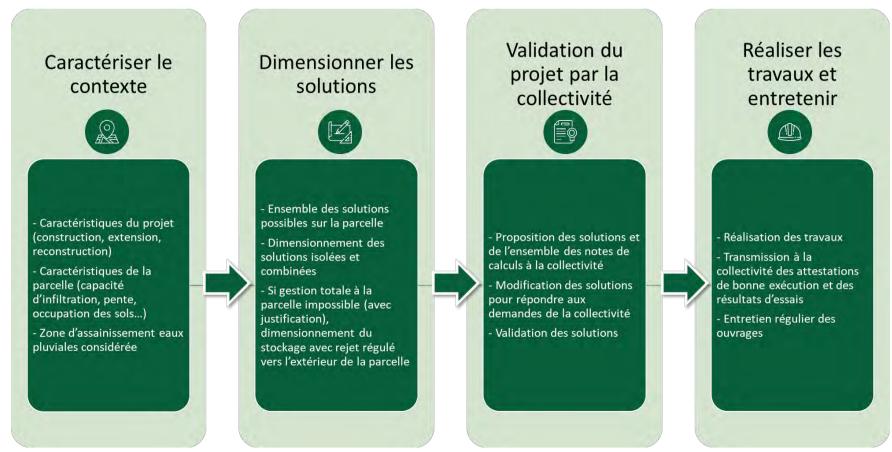
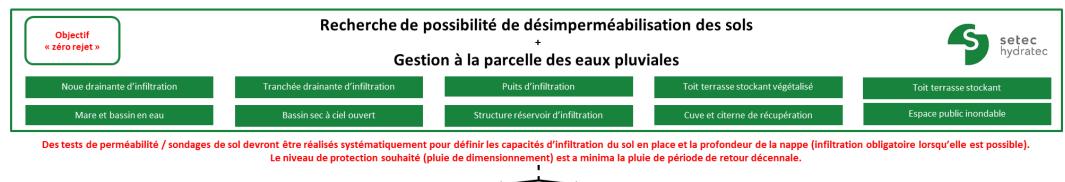
- Les zones à faibles contraintes : zones où les réseaux d'assainissement pluvial en place ne sont pas saturés :
- Les zones à fortes contraintes : zones où les réseaux d'assainissement pluvial sont saturés et/ou zones qui ont pu présenter par le passé des désordres relatifs aux eaux pluviales urbaines ;
- Les autres zones : zones périphériques et zones agricoles.

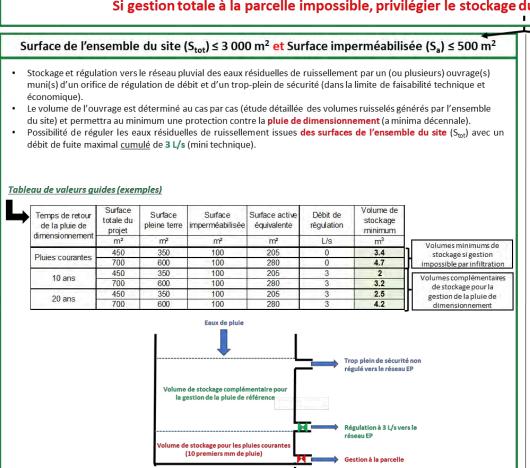
Si la gestion intégrale des eaux pluviales à la parcelle est impossible (cf. partie 3), des rejets régulés à l'extérieur de la parcelle sont envisageables selon les zones et les projets en privilégiant les milieux superficiels avant les réseaux d'assainissement pluvial publics.

Tout rejet d'eaux pluviales vers les réseaux d'assainissement d'eaux usées stricts est formellement interdit.

Le logigramme Figure 2.3 détaille les étapes de mise en place de la gestion des eaux pluviales pour le promoteur ou le particulier.

Le logigramme Figure 2.4 synthétise les règles de gestion des eaux pluviales.


Figure 2.3 : Etapes de la gestion à la parcelle des eaux pluviales

Le projet est situé dans une zone où l'infiltration est autorisée et où la perméabilité > 10-7 m/s Le projet est situé dans une zone où l'infiltration n'est pas possible ou difficile Gestion à la parcelle de la pluie de dimensionnement dans la limite du possible via les techniques suivantes (perméabilité < 10⁻⁷ m/s avec tests de perméabilité / sondages de sol / étude piézométrique à (non exhaustif): Noue drainante d'infiltration Tranchée drainante d'infiltration Puits d'infiltration Structure réservoir d'infiltration Bassin d'infiltration ou Détermination du volume nécessaire qui servira à stocker les eaux pluviales le temps que l'infiltration totale se produise. Ce volume permet d'éviter tout déversement des ouvrages jusqu'à la pluie de Le projet est situé dans une zone où l'infiltration est proscrite, à savoir : dimensionnement (choisie par la collectivité compétente selon le contexte) : A l'intérieur des zones du plan de Prévention du Risque Mouvement de Terrain approuvé par arrêté préfectoral le 16/08/2007 (aléa lié aux carrières souterraines et à la dissolution du gypse) ou si les études Tableau de valeurs guides 10 < K (m/s) < 10 de sol révèlent la présence de gypse ou de cavités souterraines au niveau de la parcelle ; 10 < K (m/s) < 10 Surface Gestion à la parcelle de la pluie de dimensionnement dans la limite du possible via les techniques suivantes (non exhaustif): 15.8 Cuve et citerne de récupération Bassins imperméabilisés 2 < S < 30 m² et 0.2m < p < 0.7 m Toit terrasse stockant végétalisé 20 ans

Si gestion totale à la parcelle impossible, privilégier le stockage du volume résiduel avec rejet régulé vers l'extérieur de la parcelle

Pour chaque ouvrage proposé, il devra être prévu un dispositif permettant un entretien adapté à l'ouvrage et l'accès aux engins et

Obligation de mise en place d'ouvrages de prétraitements ou de traitement des eaux pluviales adaptés à l'activité et à la

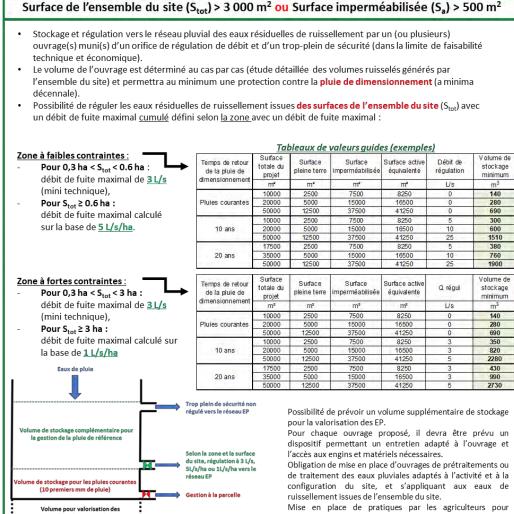


Figure 2.4 : Synthèse des règles de gestion des eaux pluviales

......

Possibilité de prévoir un volume supplémentaire de stockage pour la valorisation des EP.

configuration du site, et s'appliquant aux eaux de ruissellement issues de l'ensemble du site.

Mise en place de pratiques par les agriculteurs pour diminuer le ruissellement sur les parcelles agricoles

diminuer le ruissellement sur les parcelles agricoles.

3. METHODOLOGIE DE GESTION

3.1 CARACTERISER LE CONTEXTE

3.1.1 Examen du terrain

Un examen approfondi du terrain s'impose pour déterminer les points suivants :

- Le cheminement naturel de l'eau, les principaux talwegs ;
- Les points bas et les zones humides éventuelles pour y implanter préférentiellement les zones de stockage;
- La pente générale du terrain ;
- Les apports de l'amont : quelle quantité d'eau de ruissellement est susceptible de recevoir le projet ? De quelle qualité est-elle ? Provient-elle des toitures, des voiries, de l'agriculture ?
- Les exutoires à l'aval : existe-t-il un ruisseau, un fossé ou un réseau dans lequel rejeter les eaux pluviales qui n'ont pas pu être infiltrées ?
- La vulnérabilité à l'aval : existe-t-il des constructions susceptibles d'être inondées ? La qualité des rejets est-elle subordonnée à un usage spécifique ?
- La qualité du sol de fondation : perméabilité du terrain, profondeur de la nappe au droit du site, présence de terrains pollués, risques de glissements de terrain...

3.1.2 Rappels des capacités limites à l'infiltration

Pour que l'eau puisse s'infiltrer, la **perméabilité du sol (K en m/s)** doit être comprise entre 10⁻⁷ et 10⁻² m/s.

Avec une perméabilité plus faible que 10⁻⁷ m/s l'infiltration de l'eau est difficile voire impossible.

Dans le cas d'une perméabilité plus forte que 10⁻² m/s des dispositifs de prétraitement ou filtres doivent être mis en place pour éviter le lessivage des sols.

3.1.3 Pratiques de détermination de l'infiltration du sol

Pour vérifier l'infiltration à la parcelle, il est recommandé de réaliser un essai de perméabilité par une entreprise professionnelle.

Pour déterminer l'infiltration des sols superficiels, une étude de perméabilité via des essais de type Porchet sont nécessaires. La réalisation d'une étude de sol permettant de déterminer la perméabilité est obligatoire pour tout nouveau projet.

Les tests Porchet permettent de déterminer la capacité d'infiltration du sol superficiel. Ces essais sont encadrés par la norme *NF XP DTU 64.1 P1-1* et la *circulaire du ministère de l'environnement* $n^{\circ}97 - 49$ du 22 mai 1997 – Annexe III.

Il est demandé de réaliser des essais à différents endroits de la parcelle pour déterminer si la perméabilité est homogène ou si des secteurs sont plus propices à l'infiltration.

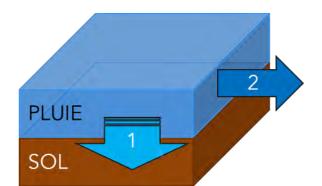
Figure 3.1: Exemple d'essai Porchet

Les essais Lefranc sont réalisés en profondeur dans un forage. Ces essais sont encadrés par la norme *NF EN ISO 22282-2*.

Les essais Lefranc sont demandés dans l'étude de perméabilité pour déterminer la perméabilité au niveau de l'horizon proche de la zone d'infiltration profonde prévue (radier bassin, fond puisard...)

Une étude piézométrique in-situ devra également permettre de vérifier la profondeur de la nappe et donc l'aptitude du sol à l'infiltration vis-à-vis de ce critère (cf. cartes présentées dans le dossier de zonage; sols gorgés d'eau une partie de l'année).

3.1.4 Secteurs où l'infiltration est proscrite


L'infiltration est proscrite sur les secteurs suivants :

 A l'intérieur des zones du plan de Prévention du Risque Mouvement de Terrain (cf. cartes présentées dans le dossier de zonage) approuvé par arrêté préfectoral le 16/08/2007 (aléa lié aux carrières souterraines et à la dissolution du gypse) ou si les études de sol révèlent la présence de gypse ou de cavités souterraines au niveau de la parcelle;

3.1.5 Surface de la parcelle et surface active

La surface intégrale de la parcelle (S) peut se décomposer en plusieurs parties selon l'occupation du sol. En effet, le type d'occupation (toiture, chaussée en bitume, espace vert...) plus ou moins imperméabilisé permet d'infiltrer l'eau en conséquence. Chaque type de surface entraîne donc un ruissellement d'eaux pluviales caractéristique défini par le coefficient de ruissellement (Cr).

Les Figure 2.2 et Figure 3.2 illustrent ce phénomène.

1 : Une partie de la pluie s'infiltre

2 : Le reste de la pluie ruisselle sur le sol

Figure 3.2 : Schéma de principe du ruissellement

Le tableau ci-dessous précise les coefficients de ruissellement par type de surface.

Tableau 3.1 : Coefficients de ruissellement par type de sol

Nature de la surface	Identificant surface	Coefficient de ruissellement (Cri)		
Bassins en eau permanent, mare	S1	1		
Espace vert utilisé pour la rétention d'eaux pluviales (noues, bassins)	S2	1		
Espaces verts en pleine terre	S3	0.3		
Espaces verts sur dalle (ép. Supérieure ou égale à 50 cm)	S4	0.5		
Sol semi-perméable (pavé joints sable, stabilisé, enrobé drainant)	S5	0.8		
Sol imperméable (enrobés, bétons)	S6	1		
Toiture-terrasses végétalisée (susbtrat supérieur à 10cm)	S7	0.7		
Toiture-terrasse gravillonnée	S8	0.7		
Toiture en pente (tuiles, ardoises, zinc)	S9	1		

Le **coefficient de ruissellement équivalent (Ceq)** permet de déterminer la fraction de la pluie qui parvient réellement à l'exutoire de la parcelle. Son calcul est le suivant :

$$C_{eq} = \frac{\sum Cr_i * S_i}{S}$$

Cri: le coefficient de ruissellement du type de surface i

S_i: la valeur de la surface de type i (m²)

S: la surface totale de la parcelle du projet (m²)

La surface active (Sa) est la surface imperméable équivalente participant au ruissellement.

$$S_a = C_{eq} * S$$

Sa: la surface active de ruissellement (m²)

Ceq: le coefficient de ruissellement équivalent

Q: la surface totale du projet (m²)

La détermination de la surface active est utile au dimensionnement des ouvrages (citerne, bassin, noue...). Elle permet de quantifier le volume de pluie à stocker en fonction de l'infiltration du terrain et des rejets possibles.

Figure 3.3 : Exemple de calcul de surface

Exemple de calcul de surface sur la figure ci-dessus :

$$S = 607 m^{2}$$

$$S_{3} = 210 + 197 = 407 m^{2}$$

$$S_{6} = 62 + 23 = 85 m^{2}$$

$$S_{8} = 115 m^{2}$$

$$C_{eq} = \frac{407 * 0.3 + 85 * 1 + 115 * 1}{607} = 0.53$$

$$S_{a} = 607 * 0.53 = 321.7 m^{2}$$

Sur ce pavillon de 607 m², certaines zones infiltrent une partie de l'eau pluviale (terre, pelouse...). La décomposition des surfaces permet de considérer que la parcelle équivaut à 321.7 m² de surface où la pluie ruisselle complètement.

3.2 DIMENSIONNER LES SOLUTIONS

3.2.1 Remarque

Cette méthode permet une première approche pour déterminer le volume d'eau pluviale qui doit être stocké dans un ouvrage. Elle s'applique au dimensionnement des fossés, noues, puits d'infiltration, tranchées, bassins et structures réservoirs. La méthode utilisée est « la méthode des pluies ».

La méthode de calcul du volume des ouvrages de rétention ou d'infiltration présente des limites d'utilisation :

- elle ne prend en compte que les eaux de pluies qui tombent sur la parcelle;
- elle ne prend pas en compte les eaux de ruissellements qui proviennent de l'extérieur de la parcelle;
- elle ne peut être utilisée que pour des surfaces urbaines;
- le débit de fuite de l'ouvrage de stockage est constant.

Cette méthode prend seulement en compte le calcul de volume de rétention (aspect hydraulique).

3.2.2 Pluie de dimensionnement

Le niveau de protection retenu (pluie de dimensionnement) pour le dimensionnement des ouvrages de gestion des eaux pluviales des zones à faibles contraintes et des zones à fortes contraintes est la pluie décennale (période de retour 10 ans).

Dans le cas de projet particulièrement sensible, la collectivité pourra exiger un dimensionnement des ouvrages sur la base d'un niveau de protection supérieur.

Les ouvrages de gestion des eaux pluviales ne devront pas surverser pour des pluies de période de retour inférieure ou égale à la pluie de dimensionnement.

Pour les autres zones (zones périphériques et zones agricoles), l'objectif à atteindre est la neutralitéhydraulique du projet pour toute pluie de période de retour inférieure à 30 ans.

Dans tous les cas, si la gestion totale des eaux pluviales à la parcelle est impossible, il est demandé de consulter les services compétents pour étudier au cas par cas le projet.

De même, une consultation pour analyse au cas par cas par les services compétents est demandée pour les projets sensibles et/ou de grande ampleur (soumis à déclaration ou autorisation Loi sur l'Eau).

La courbe intensité – durée – fréquence est fournie en fin de document pour le dimensionnement des ouvrages (cf. annexes 1 et 2).

Les caractéristiques des orages ont été déterminés via les coefficients de Montana fournis par Météofrance, définis sur l'échantillon de 1998-2014 à la **station de Changis-sur-Marne** et présentés en annexes 1 et 2.

3.2.3 Détermination du débit de fuite

a) Débit de fuite via infiltration

Le **débit de fuite (Qf)** correspond au débit d'eaux pluviales qui vont être infiltrées via l'ensemble des ouvrages mis en place.

Ce débit de fuite est calculé via la surface totale où des ouvrages d'infiltrations sont envisagés.

$$Q_f = S_{inf} * K$$

Q_f: le débit de fuite (m³/s)

S_{inf}: la somme des surfaces au sol des ouvrages d'infiltration possibles (m²)

K : Perméabilité du sol (m/s)

b) Débit de rejet régulé vers l'extérieur de la parcelle

Si l'impossibilité de gestion totale à la parcelle est justifiée (études de perméabilité à <u>l'appui</u>), les eaux pluviales peuvent être en partie rejetées vers l'extérieur de la parcelle sous certaines conditions.

Les règles de gestion sont alors les suivantes :

- Le volume de pluie (selon la pluie de dimensionnement retenue par la collectivité compétente) doit être stocké temporairement et restitué en étant régulé selon les règles du zonage d'assainissement eaux pluviales décrites dans le Tableau 3.2
- L'exutoire privilégié du rejet doit être le milieu naturel (cours d'eau, fossé...), sinon le réseau public d'assainissement pluvial si existant.

Les valeurs de **débits régulés (Qr)** sont rappelées dans le tableau ci-dessous.

Tableau 3.2 : Rappel des débits régulés sur le territoire

Débits de rejets autorisés si impossibilité justifiée de gestion totale des eaux pluviales à la parcelle (étude de sol à l'appui)											
Zones	Type de projet	Débit de rejet autorisé	Exutoire								
Zones à fortes contraintes	Extension, Construction, reconstruction	1 l/s/ha (mini technique 3 l/s)	Privilégier milieu superficiel, sinon réseau d'assainissement pluvial public si existant à condition qu'il existe								
Zones à faibles contraintes	Extension, Construction, reconstruction	5 l/s/ha (mini technique 3 l/s)	Privilégier milieu superficiel, sinon réseau d'assainissement pluvial public si existant à condition qu'il existe								
Autres zones	Extension, Construction, reconstruction	Maitrise du ruissellement Etude au cas par cas avec les services compétents	Privilégier milieu superficiel, sinon réseau d'assainissement pluvial public à condition qu'il existe								

Attention, le débit de rejet régulé est égal à la somme des débits ayant leur exutoire en dehors de la parcelle :

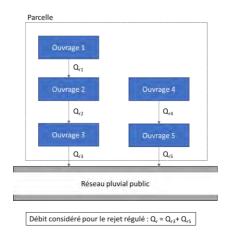


Figure 3.4 : schéma de principe pour les débits régulés

Aucune prescription ne concerne les débits régulés entre ouvrages à l'intérieur d'une même parcelle.

3.2.4 Calcul du volume de stockage

a) Possibilité d'infiltration

Lors de la mise en place d'infiltration, il est nécessaire de déterminer le volume nécessaire qui servira à stocker les eaux pluviales le temps que l'infiltration totale se produise. Ce volume permet d'éviter tout déversement des ouvrages jusqu'à la pluie vicennale (incluse).

Ce volume se détermine graphiquement en 4 étapes.

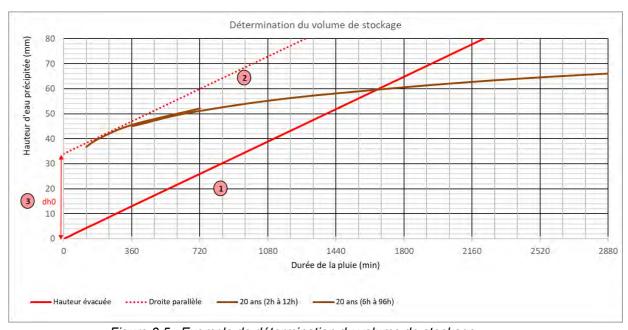


Figure 3.5 : Exemple de détermination du volume de stockage

Etape 1

Tracer la droite des hauteurs d'eau évacuées. Sa pente est le débit de fuite spécifique (Q_{s0}).

$$Q_{S0} = 60000 * \frac{Q_{f0}}{S_a} = 60000 * \frac{Q_{inf}}{S_a}$$

Q_{S0}: débit d'infiltration spécifique (mm/min)

Q_{f0}: débit de fuite (m³/s). S_a: Surface active (en m²)

Sur le graphique en annexes 1 et 2, on dessine alors la droite ayant pour équation :

$$h(t) = Q_{S0} * t$$

h(t): la hauteur d'eau évacuée à l'instant t (mm)

t: temps (min)

C'est la droite rouge sur l'exemple de la Figure 3.5.

Etape 2

Tracer la droite parallèle à la droite des hauteurs d'eau évacuées qui est tangente à la courbe de pluie considérée.

Sur l'exemple Figure 3.5, c'est la droite rouge pointillée qui touche la courbe marron de la pluie 20 ans.

Etape 3:

Déterminer la hauteur à stocker (dho). C'est la valeur de la droite rogue pointillée sur le graphique au temps t=0 min.

Etape 4:

Le volume d'eau à stocker (V₀) est déterminé par la formule suivante :

$$V_0 = 1.2 * dh_0 * S_a/1000$$

V₀: volume à stocker (m³)

1.2 : coefficient de sécurité

dho: Hauteur maximale à stocker (mm)

S_a: Surface active (m²)

b) Calcul avec rejet

S'il est **impossible d'infiltrer l'ensemble des eaux pluviales** (sols imperméables), un rejet vers l'extérieur de la parcelle est possible (Q_r, cf. 3.1.2 et 0).

Il faut alors réaliser à nouveau les étapes 1 à 4 pour déterminer le volume de stockage avec cette fois le débit spécifique suivant :

$$Q_{f1} = Q_{inf} + Q_r$$

$$Q_{s1} = 60000 * \frac{Q_{f1}}{S_a}$$

$$V_1 = 1.2 * dh_1 * \frac{S_a}{1000}$$

Q_{f1}: débit de fuite avec rejet (m³/s)

Q_{inf}: débit d'infiltration (m³/s) Q_r: débit de rejet régulé (m³/s)

 Q_{s1} : débit spécifique avec rejet (m³/s) dh₁: hauteur maximale à stocker (mm)

S_a : Surface active (m²) 1.2 : Coefficient de sécurité

c) Volumes prédéterminés

1) Dans le cas des projets de particulier où :

l'infiltration de toutes les eaux pluviales est possible ;

Alors le volume nécessaire qui servira à stocker les eaux pluviales le temps que l'infiltration totale se produise est déterminé par le tableau ci-dessous (valeurs guides) :

Tableau 3.3 : Volumes prédéterminés pour le stockage avant infiltration

					Pérméabilité faible à moyenne Perméabil 10 ⁻⁷ < K (m/s) < 10 ⁻⁵ 10 ⁻⁵ < K (r		té élevée n/s) < 10 ⁻³			
Temps de retour de la pluie de dimensionnement	Surface totale du projet	Surface en pleine terre (espace vert)	Surface imperméabilisée (toiture,allée, terrasse)	Surface active équivalente	Surface disponible pour l'ouvrage d'infiltration (hypothèse ici)	Volumes minimum de stockage nécessaires (m³)	Surface disponible pour l'ouvrage d'infiltration (hypothèse ici)	Volumes minimum de stockage nécessaires (m³)		
	m²	m²	m²	m²	m²	m ³	m²	m ³		Ampleur des ouvrages (projets de type pavillon)
	450	350	100	205	10	2.3	5	0.4	l	puits d'infiltration
	700	600	100	280	10	3.5	10	0.5	Φ =1.5 et p =5 m	
Pluies courantes	10000	2500	7500	8250	625	70	250	15		ou noue
	20000	5000	15000	16500	1250	150	500	30		10m ² < S < 5 m ² et 0.06m < p < 0.35m
	50000	12500	37500	41250	3125	370	1000	75		
	450	350	100	205	20	12	10	3.7	Ы	
	700	600	100	280	30	15.8	20	4	l۲	Annalassadas assumanas (analata da tima massillan)
10 ans	10000	2500	7500	8250	625	376	625	114	۲	Ampleur des ouvrages (projets de type pavillon)
	20000	5000	15000	16500	1250	990	1250	240		puits d'infiltration $1.5m < \Phi < 2.5m$ et $5m$
	50000	12500	37500	41250	3125	2475	3125	595	L	ou noue/petitbassin
	450	350	100	205	20	14	10	4.9	π	• 10m ² < S < 30 m ² et 0.2m < p < 0.7m
	700	600	100	280	30	18.8	20	5.4	10111-13 1 30 111-et 0.2111 1 p 10.7	1011 × 0 × 30 III 6t 0.211 × p × 0.711
20 ans	17500	10000	7500	10500	625	465	625	149		
	35000	20000	15000	21000	1250	1170	1250	307	1	
	50000	12500	37500	41250	3125	2920	3125	742	1	

- 2) Dans le cas des projets de particulier où :
- l'infiltration de toutes les eaux pluviales est impossible (étude de perméabilité à l'appui);
- Surface de l'ensemble du site (S_{tot}) ≤ 3 000 m² et Surface imperméabilisée (S_a) ≤ 500 m²;
- Un rejet des eaux résiduelles vers l'extérieur de la parcelle à 3 l/s est autorisé ;

100

100

Alors le volume nécessaire pour stocker les eaux et les rejeter avec une régulation est déterminé par le tableau ci-dessous (valeurs guides).

Surface Volume de Temps de retour Surface Surface Surface active Débit de totale du stockage de la pluie de pleine terre imperméabilisée équivalente régulation minimum projet dimensionnemen m² m² m² L/s m² m³ Volumes minimums de 450 350 100 205 3.4 stockage si gestion Pluies courantes 700 600 100 280 0 4.7 impossible par infiltration 450 350 100 205 3 2 10 ans Volumes complémentaires 700 3 600 100 280 3.2

Tableau 3.4 : Volumes prédéterminés pour les petites surfaces

3) Dans le cas des projets de particulier où :

350

600

450

700

20 ans

• l'infiltration de toutes les eaux pluviales est impossible (étude de perméabilité à l'appui) ;

205

3

2.5

- Surface de l'ensemble du site (Stot) > 3 000 m² ou Surface imperméabilisée (Sa) > 500 m²;
- Le projet est situé en zone à faibles contraintes et le rejet régulé autorisé est calculé sur la base de <u>5 L/s/ha</u>.

Alors le volume nécessaire pour stocker les eaux et les rejeter avec une régulation est déterminé par le tableau ci-dessous (valeurs guides).

Tableau 3.5 : Volumes prédéterminés pour les grandes surfaces en zone à faibles contraintes

Temps de retour de la pluie de dimensionnement	Surface totale du projet	Surface pleine terre	Surface imperméabilisée	Surface active équivalente	Débit de régulation	Volume de stockage minimum		
differisionfiellent	m²	m²	m²	m²	L/s	m ³		
	10000	2500	7500	8250	0	140	ר	Volumes minimums de
Pluies courantes	20000	5000	15000	16500	0	280	 	stockage si gestion impossible par
	50000	12500	37500	41250	0	690		infiltration
	10000	2500	7500	8250	5	300	٦	
10 ans	20000	5000	15000	16500	10	600	П	Volumes
	50000	12500	37500	41250	25	1510	П	complémentaires de
	17500	2500	7500	8250	5	380		stockage pour la gestion de la pluie de
20 ans	35000	5000	15000	16500	10	760	П	dimensionnement
	50000	12500	37500	41250	25	1900	Ш	

de stockage pour la

gestion de la pluie de

dimensionnement

- 4) Dans le cas des projets de particulier où :
- l'infiltration de toutes les eaux pluviales est impossible (étude de perméabilité à l'appui) ;
- Surface de l'ensemble du site (Stot) > 3 000 m² ou Surface imperméabilisée (Sa) > 500 m²;
- Le projet est situé en zone <u>à fortes contraintes et le rejet régulé autorisé est</u> calculé sur la base de <u>1 L/s/ha</u>.

Alors le volume nécessaire pour stocker les eaux et les rejeter avec une régulation est déterminé par le tableau ci-dessous.

Tableau 3.6 : Volumes prédéterminés pour les grandes surfaces en zone à fortes contraintes

Temps de retour de la pluie de dimensionnement	Surface totale du projet	Surface pleine terre	Surface imperméabilisée	Surface active équivalente	Q régul	Volume de stockage minimum		
dimensionnement	m²	m²	m²	m²	L/s	m ³		
	10000	2500	7500	8250	0	140	٦	Volumes minimums de
Pluies courantes	20000	5000	15000	16500	0	280	┝	stockage si gestion impossible par
	50000	12500	37500	41250	0	690		infiltration
	10000	2500	7500	8250	3	350	٦	
10 ans	20000	5000	15000	16500	3	820	Ш	Volumes
	50000	12500	37500	41250	5	2280	L	complémentaires de
	17500	2500	7500	8250	3	430	stockage pour gestion de la plui dimensionneme	
20 ans	35000	5000	15000	16500	3	990		dimensionnement
	50000	12500	37500	41250	5	2730		

Pour les projets ne répondant pas à ces catégories ou pour les projets avec combinaisons de techniques de gestion (infiltration + stockage + débit régulé), les volumes devront être déterminés au cas par cas par la « méthode des pluies » présentée précédemment.

3.3 PRETRAITEMENT SPECIFIQUE

Toute demande de permis de construire n'émanant pas d'un particulier devra faire l'objet de mesures permettant d'améliorer la qualité des eaux pluviales et de préserver la qualité du milieu récepteur :

Obligation de mettre en place des ouvrages de prétraitement ou de traitement (filtres plantés, débourbeur, décanteurs lamellaires, séparateurs hydrocarbures ...) des eaux pluviales adaptés au projet et à la configuration du site, et s'appliquant aux eaux de ruissellement issues de l'ensemble du site (imperméabilisations actuelles et nouvelles).

L'ensemble des ouvrages de prétraitements et les dispositifs de protection seront mis en place préférentiellement en aval d'un dispositif de régulation et systématiquement équipés d'un by-pass pour les débits supérieurs à leur dimensionnement maximal.

En plus des dispositifs présentés ci-dessous, la collectivité se réserve le droit de demander tout dispositif particulier complémentaire de protection des pollutions liées à un projet, notamment pour répondre aux exigences de l'Agence de l'Eau Seine-Normandie.

3.3.1 Prétraitement des dépôts dits sableux

Les techniques alternatives enherbées (noues, fossés, bandes d'herbes) permettent de réaliser un premier prétraitement efficace pour les pluies courantes au niveau de la parcelle.

Les bassins et mares permettent de réaliser une décantation qui piège les particules polluantes plus lourdes que l'eau. Ces particules sont ensuite extraites lors des curages d'entretien.

Ce prétraitement peut se révéler insuffisant pour les évènements pluvieux importants ou pour les pollutions particulières (par exemple issues de station-service).

Si aucun de ces dispositifs ne peut être mis en place sur la parcelle, la collectivité peut demander la mise en place d'une **chambre à sables**.

Ces chambres souterraines permettent la décantation des effluents. L'ensemble des sédiments décantés doivent être curés régulièrement par une entreprise spécialisée qui les acheminera vers une unité de traitement spécifique.

Le dimensionnement de ces ouvrages doit être basé sur les évènements courants (pluies mensuelles) et la fréquence de curage basée sur la quantité de sédiments récoltés (au moins une fois par an).

3.3.2 Prétraitement des huiles et hydrocarbures

Les **séparateurs hydrocarbures** sont des dispositifs permettant de retenir les hydrocarbures et huiles qui surnagent par rapport à l'eau. Ce système de protection est particulièrement efficace pour prévenir la pollution lors d'accidents (par exemple fuite d'hydrocarbures se déversant dans une grille pluviale) plutôt que la pollution diffuse (très faible quantité d'hydrocarbures dilués dans les eaux de pluies par lessivage des sols).

Ce type de dispositif de protection des pollutions accidentelles peut être exigé par la collectivité.

Cette disposition s'applique notamment aux projets suivants (non exhaustifs) :

- Activité de type station-service ou liée aux hydrocarbures ;
- Plateformes logistiques ;
- Parkings supérieurs à 12 places ;
- Surfaces imperméables (bitume, enrobé, béton) supérieures à 200 m².

Les séparateurs à hydrocarbures mis en place devront répondre aux normes *NF EN 858-1 et NF EN 858-2*. Une vanne d'isolement devra systématiquement être installée à l'aval des séparateurs hydrocarbures.

3.4 GESTION DES EAUX PLUVIALES SUR LES PARCELLES AGRICOLES

Pour les parcelles agricoles, dans un objectif de ne pas aggraver la situation actuelle, il est préconisé de favoriser les pratiques culturales permettant de freiner le ruissellement et de favoriser l'infiltration des eaux avant leur acheminement aux zones urbaines.

A titre d'exemples, parmi les actions encouragées par les chambres d'agriculture et pouvant être mises en place par les agriculteurs pour éviter ou retarder la formation du ruissellement, on peut citer:

- L'adaptation des pratiques culturales pour augmenter la rugosité de surface et la perméabilité du sol,
- La couverture des sols pendant les périodes sensibles,
- Le travail dans le sens perpendiculaire à la pente,
- La conservation des haies, arbres, fossés et des talus entre les parcelles agricoles, afin de retenir les écoulements.

Certaines de ces actions peuvent faire l'objet de financement.

Elles permettent de contribuer à une meilleure gestion quantitative et qualitative des eaux de ruissellement.

3.5 VALIDATION DU PROJET PAR LA COLLECTIVITE

Le porteur de projet devra fournir les documents relatifs à la gestion des eaux pluviales en annexe de la demande de permis de construire.

Ces documents devront être constitués a minima des pièces suivantes :

- Plans:
- Présentation des ouvrages prévus (type, localisation, caractéristiques principales) ;
- Résultats de l'étude de perméabilité ;
- Notes de calcul de dimensionnement (annexes 1, 2 et 3) ;
- Tout autre document pouvant être utile à la compréhension.

Selon l'importance des projets, la collectivité se réserve le droit de demander des précisions ou des documents complémentaires pour l'instruction du dossier.

3.6 REALISER LES TRAVAUX ET ENTRETENIR

A la suite des travaux, le porteur de projet devra fournir à la collectivité l'ensemble des documents attestant de la bonne réalisation des ouvrages et des résultats des essais associés.

Enfin, il est rappelé que le bon fonctionnement des ouvrages est lié à leur entretien régulier. L'ensemble des entretiens à réaliser pour chaque ouvrage est précisé au chapitre 4.

4. PRESENTATION DES TECHNIQUES ALTERNATIVES

4.1 STRUCTURES POREUSES

Principe de fonctionnement

Les structures poreuses sont des revêtements de sol permettant aux eaux pluviales de s'infiltrer là où elles tombent. Ces techniques réduisent de façon conséquente les quantités d'eau provenant du ruissellement.

Une structure poreuse constitue une solution alternative au revêtement traditionnel.

Figure 4.1 : Schéma de fonctionnement

Conseils sur la conception

<u>Implantation</u>

Ce type d'ouvrage est essentiellement destinée aux aménagements simples tels que les chemins piétonniers, les parkings, les voiries légères, les pistes cyclables, les terrasses ou encore les entrées de garage.

Matériau

De nombreux revêtements poreux existent et présentent des caractéristiques adaptées selon l'occupation du sol (type de circulation, entretien, aspect esthétique...). On distingue deux catégories principales :

• Les revêtements modulaires constitués de pavés, blocs ou éléments assimilés. Chaque module peut être poreux ou l'infiltration peut être réalisée au niveau des interstices entre les modules. Ces modules sont généralement posés sur une couche de sable ;

• Les revêtements surfaciques, constitués soit de bitume particulier permettant l'infiltration, soit de matériaux fins (gravillons concassés, éclats de pierre, graviers...).

Il est nécessaire d'interposer un géotextile anti-poinçonnement et anti-contaminant entre les différentes couches superposées afin de limiter les migrations de particules fines, de prévenir les remontées d'eau par capillarité, et de favoriser la stabilisation de l'ouvrage.

Entretien

Un nettoyage annuel est préconisé : soit par balayeuse aspiratrice (pour les espaces de type voirie), soit par l'utilisation d'eau sous pression. Cet entretien permet de conserver la porosité du matériau et éviter son colmatage.

L'emploi de désherbant chimiques est proscrit pour éviter toute contamination de l'eau infiltrée.

4.2 Noues et fosses

Principe de fonctionnement

Les fossés et les noues permettent de collecter l'eau de pluie, par des canalisations ou par ruissellement, en ralentissant leur écoulement. L'eau est stockée, puis évacuée par infiltration dans le sol ou vers un exutoire à un débit régulé (réseau de collecte, cours d'eau...).

Leur différence repose sur leur conception et leur morphologie :

- Les fossés: structures linéaires, assez profondes avec des rives abruptes. L'eau de pluie s'évacue par écoulement vers un exutoire ou par infiltration dans le sol s'il est perméable.
- Les noues: ce sont des fossés larges et peu profonds avec des rives en pente douce. Il y a plusieurs types de noues, donc plusieurs types de fonctionnement. Elles peuvent être utilisées comme: Bassin de rétention, rétention/infiltration ou infiltration, exutoires à part entière, volume de stockage supplémentaire alimenté par débordement lors de la mise en charge du réseau ou d'un ouvrage alternatif.

Ces systèmes ont l'avantage de réaliser une dépollution des eaux pluviales via décantation, filtration dans le sol et captation via les végétaux. De plus, ces ouvrages apportent de nombreuses externalités positives (plus-value paysagère, espace vert...)

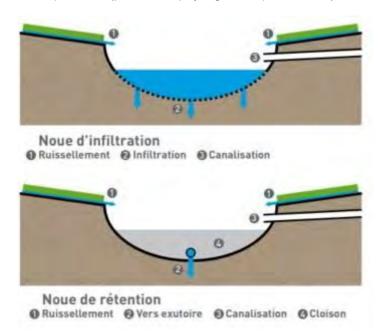


Figure 4.2 : Schéma de principe

Conseils sur la conception

Implantation

Les fossés et noues peuvent être placés:

- dans le sens d'écoulement des eaux de ruissellement ;
- perpendiculaire aux eaux de ruissellement, pour intercepter l'eau et ralentir la vitesse d'écoulement.

L'ouvrage étant linéaire, l'espace d'implantation devra présenter une longueur suffisante pour maximiser la surface d'infiltration.

Surface d'infiltration

La surface d'infiltration considérée pour ces ouvrages est la surface au sol.

$$S_{inf} = Largeur * longueur$$

Largeur : Largeur au niveau haute de l'ouvrage (m)

Longueur : linéaire de l'ouvrage (m)

Matériau et végétaux

Pour stabiliser les flancs de l'ouvrage, il est possible de planter les berges, utiliser des pieux verticaux (rondins de bois), mettre en place des enrochements, placer un géotextile ou une géogrille.

Le choix des végétaux devra correspondre au fonctionnement de l'ouvrage :

- Gazon résistant à l'eau et à l'arrachement (herbe des Bermudes, Puéraire hirsute, Pâturin des prés, Brome interme) ;
- Arbres et arbustes pour stabiliser les berges : privilégier les arbres à feuilles pérennes ou les résineux pour éviter l'obstruction des dispositifs de régulation avec les feuilles morts.

Entretien

Un entretien préventif proche de celui des espaces verts courant est à réaliser (tonte, ramassage des feuilles et détritus). Le curage des orifices devra être réalisé après chaque pluie importante (orages ou pluies d'hiver d'au moins 1h).

Un entretien curatif pourra également être nécessaire. Si la terre végétale est colmatée, il faudra l'extraire et la remplacer par un nouveau substrat.

4.3 TRANCHEES DRAINANTES OU INFILTRANTES

Principe de fonctionnement

Ce sont des ouvrages linéaires et superficiels remplis de matériaux poreux tels que du gravier ou des galets. L'eau de pluie est collectée par ruissellement ou par des canalisations. Selon le type, les tranchées retiennent l'eau de pluie et l'évacuent vers un exutoire, ou l'infiltrent dans le sol. Ces deux techniques peuvent se combiner.

 La tranchée drainante: système de rétention des eaux. L'eau de pluie est évacuée par un drain, selon un débit régulé vers un exutoire (réseau de collecte, cours d'eau, bassin de rétention/infiltration).

La tranchée infiltrante: système d'infiltration des eaux. L'évacuation de l'eau de pluie se fait par infiltration directe dans le sol.

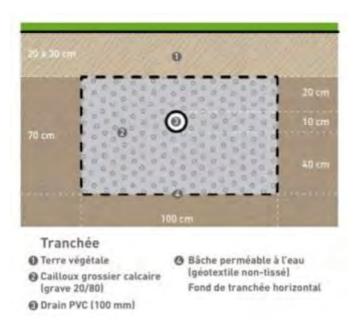


Figure 4.3 : schéma de principe

Conseils sur la conception

Implantation

La tranchée doit être perpendiculaire au sens d'écoulement des eaux de ruissellement.

Le fond de la tranchée doit être horizontal pour faciliter la diffusion de l'eau dans la structure. Un drain aux extrémités bouché peut également permettre de répartir les eaux sur toute la tranchée.

Sur des terrains en pente, des cloisons formant barrages permettent d'empêcher l'érosion causée par la vitesse de l'eau et d'augmenter les volumes de stockage.

Pour éviter tout colmatage en cours de chantier, il est important de réaliser l'ouvrage après le gros œuvre, à moins d'assurer une protection efficace.

Surface d'infiltration

La surface d'infiltration considérée pour ces ouvrages est uniquement la moitié des parois verticales. On considère que le fond de ces ouvrages se colmate rapidement.

$$S_{inf} = 0.5 * S_{parois\ verticales}$$

Sparois verticales: La surface des parois verticales (m²)

Matériau

Les matériaux de remplissage sont choisis en fonction de leurs caractéristiques mécaniques (résistance à la charge) et hydrauliques (porosité). Les matériaux de surface sont des revêtements étanches ou poreux (dalles, blocs poreux ou alvéolés, voir les structures poreuses) dans le cas de voies ouvertes à la circulation routière ou sous trottoirs ; des galets ou des végétaux s'il n'y a pas de circulation.

Entretien

Veiller à garder la trace des ouvrages réalisés afin de ne pas les détourner de leur fonction hydraulique initiale. Eviter ainsi tout stockage de matériau ou le stationnement sur ces structures, qui pourraient altérer les capacités de rétention d'eau et d'infiltration.

Si les galets sont apparents, l'entretien consiste à ramasser les déchets éventuels.

4.4 Puits D'INFILTRATION

Principe de fonctionnement

Les puits d'infiltration sont des ouvrages où vont être acheminées les eaux pluviales pour s'infiltrer dans le sol.

Dans la majorité des cas, la filtration des polluants se fait grâce à des matériaux (cailloux, galets, graviers, granulats, sable...) entourés d'un géotextile. La structure périphérique peut se composer d'éléments préfabriqués de type buses perforées. Pour encore plus d'efficacité, les puits d'infiltration, dont la capacité de stockage reste faible (ils sont vite saturés lors des orages violents), sont souvent associés à d'autres techniques comme les tranchées drainantes, les noues, les fossés, voire les bassins de rétention qui assurent le débit de fuite lorsqu'il n'y a pas d'alternative.

Les puits d'infiltration présentent l'avantage de nécessité peu de place en surface et s'intègrent à tout type d'occupation des sols.

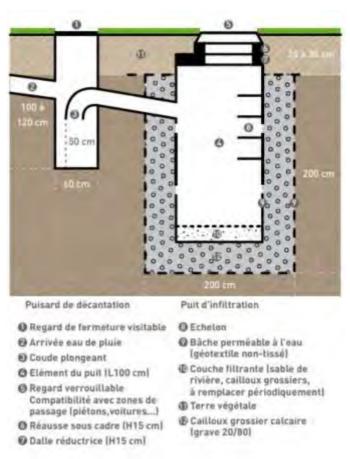


Figure 4.4 : schéma de principe du puits d'infiltration

Conseils sur la conception

Implantation

L'ouvrage doit être implanté à une distance minimale de 3 m par rapport à tout arbre ou arbuste et de 5 m de tout bâtiment.

L'ouvrage doit être situé en partie basse de la parcelle.

La perméabilité du sol doit être suffisante (durée d'infiltration après orage d'environ 6h).

Surface d'infiltration

La surface d'infiltration considérée pour ces ouvrages est la moitié des parois verticales et le fond.

$$S_{inf} = S_{fond} + 0.5 * S_{parois\ verticales}$$

S_{parois verticales}: La surface des parois verticales (m²)

S_{fond}: La surface du fond du puits (m²)

Matériau

Un puits d'infiltration est généralement circulaire. Un massif drainant doit être prévu au fond du puits. Il se compose de plusieurs matériaux répartis de haut en bas : galets, gravillons, sables.

Un géotextile sépare les différentes couches et recouvre également l'ensemble.

Entretien

L'entretien des puits d'infiltration est essentiel pour éviter son colmatage.

Concernant l'entretien préventif, il est nécessaire de réaliser une visite de l'ouvrage tous les semestres pour retirer les éventuels déchets, feuilles.

De même, il faut dégager les feuilles et déchets de la grille de l'ouvrage pour ne pas bloquer l'écoulement.

L'ouvrage doit être nettoyé 1 à 2 fois par an.

Si un trop-plein est présent sur l'ouvrage, il faut vérifier son bon fonctionnement tous les trimestres (pas de bouchage notamment).

Un entretien curatif est également nécessaire. Tous les 5 ans, il faut remplacer intégralement le massif filtrant pour garder une capacité d'infiltration inaltérée. Également, si le géotextile présente une dégradation, son remplacement est préconisé.

4.5 MARES ET BASSINS

Principe de fonctionnement

Mares et bassins jouent un rôle similaire. La mare est une dépression à fond imperméable qui retient l'eau en permanence. Elle est destinée à retenir l'eau de pluie et apporte une touche de verdure dans l'environnement. Le bassin, qui se remplit uniquement par temps de pluie, peut ne pas être imperméable.

L'eau de pluie est collectée par des canalisations ou directement après ruissellement sur les surfaces adjacentes Elle est ensuite évacuée, après stockage, soit par infiltration vers une zone prévue à cet effet, soit vers un exutoire à débit limité (réseau de collecte ou rivière).

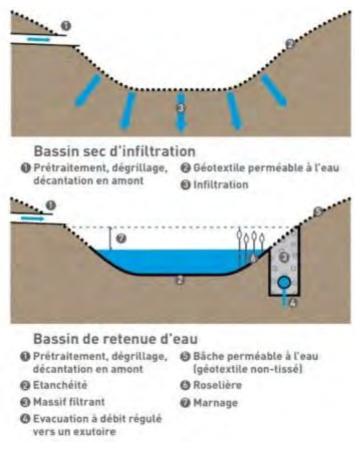


Figure 4.5 : schéma de principe

Ce type de dispositif a l'avantage de dépolluer efficacement via décantation, infiltration et captage des végétaux.

De plus, ces ouvrages présentent de nombreuses externalités positives. Les bassins secs peuvent être multifonctionnels (espace vert, parc, zone de promenade...).

Le bassins en eau permanente peuvent permettre de recréer une zone humide avec écosystème et l'eau de pluie peut être réutiliser pour d'autres besoins (loisirs, baignade, réserve...).

Conseils sur la conception

Implantation

En cas d'infiltration, la perméabilité du sol doit être suffisante (durée d'infiltration après orage entre 6h et 12h).

Dans le cas d'un bassin, le stockage d'eau est réalisé dans la dépression du terrain. Pour une mare, il se fait entre le niveau normal des eaux et le trop-plein provoqué par les très fortes pluies. Quand des bassins sont situés sur des terrains pentus, des cloisons peuvent être disposées pour retenir l'eau Elles augmentent les volumes de stockage et diminuent l'érosion.

Quel que soit l'ouvrage, il faut éviter les risques de noyade des personnes qui viendraient à chuter. Si les hauteurs d'eau stockée sont trop importantes, supérieures à 1 m, il est impératif de prévoir des dispositifs de prévention pour la sécurité et pour limiter les accès directs (barrières végétales, murets, clôtures...). La pente des talus d'un bassin ne doit pas dépasser 30 % (idéalement, elle est de 15 %) pour permettre une évacuation aisée et rapide des personnes en cas de montée des eaux.

Surface d'infiltration

La surface d'infiltration considérée pour ces ouvrages est la surface du fond de l'ouvrage.

$$S_{inf} = S_{fond}$$

S_{fond}: La surface du fond du bassin (m²)

Matériau et végétaux

L'ensemble des géotextiles doivent être des produits certifiés dans le cadre de la certification ASQUAL.

Un prétraitement peut être mis en place via un ouvrage amont situé à l'arrivée des eaux (dégrilleur, dessableur, fossé, noue).

Dans le cas où le terrain ne serait pas suffisamment imperméable, il faut prévoir une bâche étanche dans le fond de la mare. Les structures d'étanchéité par géomembranes doivent suivre les prescriptions particulières du génie civil (CCTG fascicule 70 TITRE II : Ouvrages de recueil, de stockage et de restitution des eaux pluviales, fascicules du Comité Français des Géosynthétiques, normes en vigueur et guides techniques).

S'il y a végétation, celle-ci se compose d'espèces résistantes (à l'eau et à l'arrachement) : herbe des Bermudes, puera ire hirsute, pâturin des prés, brome inerme... Éviter les arbres qui perdent beaucoup de feuilles en automne (le saule, par exemple), et éradiquer les plantes invasives comme la renouée du Japon (elle se développe sur les berges) ou le myriophylle du Brésil (plante aquatique).

Pour les mares toujours en eau, il est conseillé une hauteur minimale d'eau de 1 à 1.5m.

Entretien

Il est nécessaire de vérifier le bon fonctionnement du trop-plein tous les trimestres (pas de bouchage notamment).

Pour les bassins secs, l'entretien régulier consiste en tontes et ramassage des feuilles et détritus.

Pour les bassins en eau, le suivi de la qualité de l'eau doit être réaliser régulièrement (au moins 1 fois par an). L'entretien courant consiste en ramassage des flottant, maîtrise des espèces envahissantes, surveillance de la faune et de la flore.

Pour les bassins d'infiltration, le suivi de la perméabilité doit être réaliser réqulièrement (après chaque évènement pluvieux important, type orage ou pluie de plus d'une heure). Si l'infiltration est insuffisante (le bassin ne se vide plus ou trop lentement), il faut renouveler la couche superficielle colmatée.

Pour l'ensemble des bassins, la décantation entraîne un dépôt régulier de matières qui va, à longs termes, combler l'ouvrage. Pour conserver les capacités de l'ouvrage, il est conseiller de réaliser un curage des dépôts au fond de l'ouvrage (tous les 15 ans). Ces dépôts peuvent être valorisés selon leur composition (épandage) sinon ils seront évacués vers des sites spécifiques.

4.6 CUVES ET CITERNES

Principe de fonctionnement

Ces techniques utilisent des conteneurs (ou cuves) de taille moyenne. Directement reliés aux gouttières, ils reçoivent l'eau de pluie et constituent des réserves pour l'arrosage des jardins ou le lavage des voitures.

Les dispositifs peuvent être posés sur le sol ou enterrés. L'évacuation des eaux pluviales s'effectue par l'intermédiaire d'un tuyau permettant la vidange gravitaire ou grâce à une pompe dans le cas de citerne enterrée.

Le surplus des eaux peut être évacué vers un exutoire (infiltration sur le terrain, ruisseau, réseau en dernier recours).

La conception des citernes est encadrée par l'article 12 de la circulaire du 9 aout 1978. De même, l'utilisation des eaux de pluie dans la maison est encadrée de façon précise par l'arrêté ministériel du 21 aout 2008.

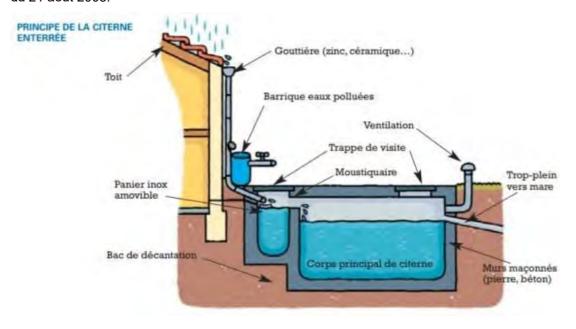


Figure 4.6 : schéma de principe

Conseils sur la conception

Implantation

La cuve extérieure se place sous les collecteurs de gouttière. Elle doit posséder un couvercle pour ne pas laisser passer la lumière et la protéger des détritus.

La citerne enterrée est à placer, de préférence, à côté de la maison, à 3 m des fondations ou dans une cave. Sa conception est plus complexe et elle doit posséder, dans la mesure du possible, 2 compartiments. Le plus petit (10 à 20 % du volume total) sert de bac de décantation avant déversement dans le corps principal de la citerne. Une pompe permet de puiser l'eau dans le fond du grand compartiment.

À ne pas négliger, également, des trappes de visite suffisamment grandes pour curer l'intérieur.

Avant la construction d'une citerne enterrée, bien vérifier la stabilité des bâtiments et s'assurer qu'aucun arbre ne pousse à proximité pour éviter d'éventuelles pénétrations des racines.

Quel que soit le type d'installation, un filtre ou tamis placé avant l'entrée de la citerne évite que les feuilles ou autres détritus ne s'accumulent et rendent la citerne inopérante.

Matériau

Pour réaliser ces installations, plusieurs matériaux sont envisageables, du plastique au béton en passant par l'acier ou le bois. Elles sont préfabriquées (leur volume est alors compris entre 0,5 et 15 m³) ou construites sur place.

Le béton est recommandé pour neutraliser l'acidité naturelle de l'eau de pluie qui corrode les canalisations.

La circulaire du 9 août 1978 précise les règles de conception suivantes :

- L'étanchéité doit être parfaite ;
- Le matériau utilisé à l'intérieur doit être inerte vis-à-vis de la pluie ;
- Seul un revêtement en gazon est autorisé au-dessus de l'ouvrage.

Entretien

L'entretien doit être réalisé régulièrement pour éviter le développement des bactéries.

Il est nécessaire de vérifier le bon fonctionnement du trop-plein tous les trimestres (pas de bouchage notamment).

Dans le cas d'une citerne enterrée, la vérification des préfiltres s'impose tous les ans, en automne, lors de la chute des feuilles.

Elle doit également être vidangée et nettoyée : idéalement chaque année ou du moins tous les 3 ou 4 ans. La vidange consiste à vider l'eau de la citerne (par pompage ou en ouvrant le robinet prévu à cet effet) et, si nécessaire, à aspirer la vase qui a pu s'accumuler (des entreprises spécialisées proposent ce service).

4.7 TOITURES STOCKANTES

Principe de fonctionnement

Ce sont des toits plats ou légèrement inclinés (pente entre 0,1 et 5%) avec un parapet en pourtour de toiture qui permet le stockage temporaire des eaux pluviales.

L'eau est évacuée à un débit régulé par le biais d'un dispositif de vidange, et par évaporation et absorption (dans le cas d'une toiture végétalisée). Les toits en pente douce peuvent être aménagés à l'aide de caissons cloisonnant la surface (création de barrages).

Les toitures stockantes peuvent être végétalisées :

- Végétation extensive: mousses, plantes vivaces, sédums.
- Végétation semi-intensive: plantes vivaces, graminées.
- Végétation intensive: gazon, plantes basses, arbustes, arbres...

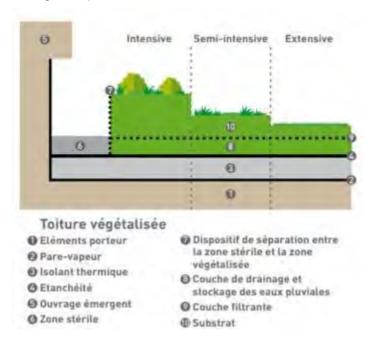


Figure 4.7 : schéma de principe

Conseils sur la conception

La mise en œuvre de toits stockants (ouvrages neufs ou réhabilitation) est régie par plusieurs règles techniques en vigueur:

- Les documents techniques unifiés: DTU 43.1 (étanchéité des toitures terrasse) et DTU 60.11 (évacuation des eaux pluviales de toiture).
- Les avis techniques pour les toitures engravillonnées.
- Les règles professionnelles de la chambre syndicale nationale de l'étanchéité pour la réfection des toitures (octobre 1987).
- Le classement FIT des revêtements d'étanchéité (cahier CSTB n°2358 de septembre 1989).

La technicité employée pour la réalisation d'une toiture stockante est similaire à la mise en œuvre d'une toiture-terrasse classique.

Le DTU 60.11 détermine les règles d'évacuation des eaux pluviales de la toiture :

- Tout point de la terrasse est situé à moins de 30m d'une descente.
- Toute bouche draine une surface maximale de 700m².
- Les descentes doivent avoir un diamètre minimum de 60mm pour éviter toute obstruction et être dimensionnées suivant les règles habituelles du DTU 60.11.

En cas de volume important à stocker, il faut assurer une sécurité à l'effondrement de la structure. Pour cela, la toiture doit pouvoir évacuer un débit de 3l/min/m2 par des trop-pleins.

Implantation

Sur une toiture de construction neuve ou existante (sauf végétation intensive) après vérification de la résistance mécanique de l'élément porteur et de l'étanchéité du toit. Les zones stériles doivent être placées autour des ouvrages contre le parapet. Pour les toitures végétalisées l'épaisseur du substrat varie selon le type de végétation:

• Extensive: 4 à 15cm

Semi-intensive: 12 à 30cm

• Intensive: > 30cm

Matériau et végétaux

Les toitures stockantes sont constituées des éléments suivants :

- Elément porteur: béton, bois et acier (les deux derniers seulement pour les végétations extensive et semi-intensive).
- Pare vapeur : contre la migration de la vapeur d'eau ;
- Isolant thermique : même type qu'une toiture classique ;
- Revêtement d'étanchéité: bicouche en membranes bitumeuses traités anti-racine ou asphalte coulé.
- Couche drainante: agrégats minéraux poreux, argile expansée, matériaux alvéolaires, éléments synthétiques pré moulés, matelas de drainage synthétiques. Située sur la couche étanche, elle permet d'éliminer du toit l'excédent d'eau.
- Couche filtrante (cas toiture végétalisée) : matériaux non tissés synthétiques en polyester ou polyéthylène. Ce géotextile est situé entre le drainage et le substrat
- Substrat (cas toiture végétalisée) : éléments organiques (tourbe, compost, terreau de feuilles...) avec minéraux (pierre de lave, pierre ponce, argile expansée...). Terre végétale pour une végétation intensive.
- Végétation (cas toiture végétalisée) : extensive, semi-intensive, intensive.
- Dispositif de séparation zone stérile et zone végétalisée (cas toiture végétalisée) : bande métallique ou bordure préfabriquée en béton ou en brique.
- Protection de l'étanchéité de la zone stérile (cas toiture végétalisée) : gravillons, dalles préfabriquées en béton ou en bois posées sur la couche drainante ou sur plots.
- Un ensemble de dispositifs de vidange. Ces systèmes de régulation et de trop-plein doivent être munis de grilles pour limiter leur obturation.

Entretien

Préconisation de la Chambre syndicale nationale d'étanchéité:

- Deux visites annuelles par an (avant l'été: contrôle des avaloirs et descentes d'eaux pluviales. Après l'automne: enlever les feuilles/ branches mortes, mousses et espèces parasitaires.);
- Arrosage, taille, tonte (végétation intensive et semi-intensive), désherbage.
- Enlever les mousses tous les 3 ans, en moyenne, au niveau des dispositifs de régulation.

Il est nécessaire de vérifier le bon fonctionnement du trop-plein tous les trimestres (pas de bouchage notamment).

4.8 REGULATEURS DE DEBIT

Principe de fonctionnement

Les régulateurs de débits ne sont pas des ouvrages complets de gestion des eaux pluviales mais plutôt des dispositifs permettant de limiter ou réguler les rejets à l'aval de l'ensemble des ouvrages de rétention précédemment présentés. Ils sont nécessaires pour respecter les débits imposé par la règlementation à l'exutoire (naturel ou réseau d'assainissement public).

Selon les dispositifs, la limitation ou régulation des débits se fait grâce à un système plus ou moins sophistiqué. Les plus adaptés aux ouvrages de petites dimensions (que l'on trouve chez les particuliers) sont les plaques percées ou à orifice. Mais il existe aussi des systèmes à vanne, à guillotine ou encore à vortex, ou des seuils flottants.

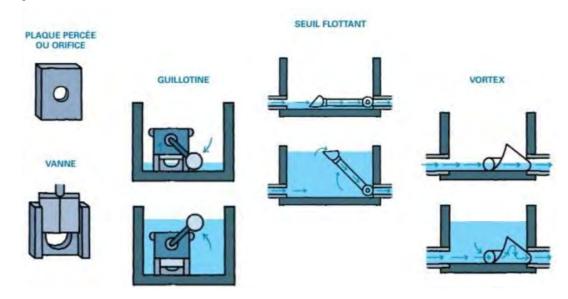


Figure 4.8 : schéma de principe

Conseils sur la conception

Implantation

Le régulateur est situé à l'aval d'un ouvrage de rétention (fossé, noue, citerne, bassin, tranchée drainante...).

Il est conseillé de placer de dispositif dans un regard accessible.

Pour les particuliers, les dispositifs simplifiés avec une plaque percée pourront suivre les règles de conception suivantes :

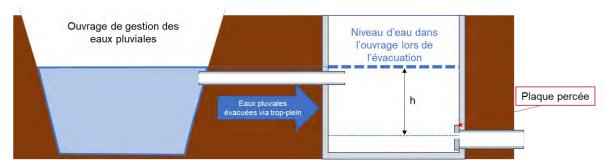


Figure 4.9 : Schéma de principe du régulateur de débit par plaque percée

Hauteur d'eau dans l'ouvrage par rapport au centre de l'orifice (h)	Débit autorisé	Diamètre de l'orifice
20 cm	3 l/s	4.5 cm
50 cm	3 l/s	3.5 cm
100 cm	3 l/s	3 cm
150 cm	3 l/s	2.5 cm

Figure 4.10 : Dimensions pour le régulateur de débit par plaque percée

Matériau

Pour les particuliers, la plaque à trou pourra être choisie en acier galvanisé pour limiter les phénomènes d'érosion. Pour faciliter son entretien, elle peut être amovible via la mise en place de 2 glissières fixées à la paroi du regard.

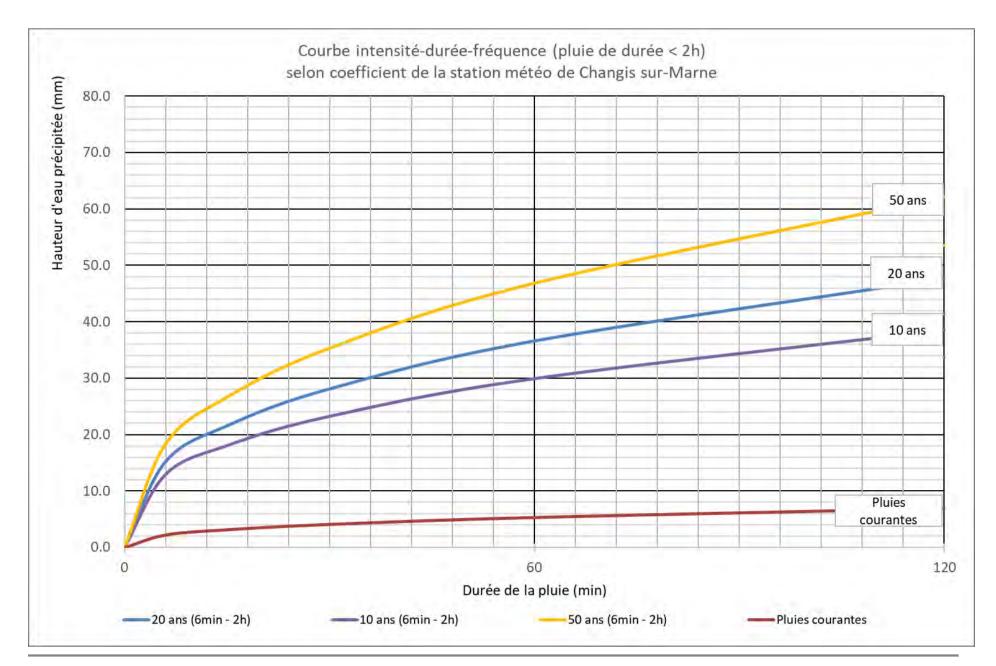
Le dispositif de régulation peut être sécurisé par une grille.

Entretien

L'entretien doit être réalisé régulièrement pour éviter toute obturation de l'organe de vidange. L'opération consiste à enlever les résidus, feuilles, encombrants, déchets...

4.9 COMBINER LES TECHNIQUES

Les techniques présentées précédemment peuvent être utilisées de façon autonome ou complémentaire.


La multiplication des ouvrages permet de diminuer leur dimensionnement. Il est ainsi possible gérer des secteurs différents de la parcelle avec plusieurs ouvrages indépendants (par exemple des puits d'infiltration répartis sur le terrain à plusieurs points bas) ou pour un fonctionnement en série (par exemple une cuve dont le trop-plein s'évacuera dans une noue puis une mare).

La multiplication des ouvrages permet de favoriser un meilleur traitement et une infiltration répartie, couvrant plus de surface et donc plus efficace.

Cependant, l'entretien est également multiplié par le nombre d'ouvrages et doit être réalisé consciencieusement pour chaque dispositif.

ANNEXES

	Annexe 1
Courbes hauteur – duree – frequi	ENCE POUR LES DUREES SUPERIEURES A 2H

CCPO

Fréquences d'apparition - Formule des hauteurs

Statistiques sur la période 1998 - 2013

CHANGIS (77)

Indicatif: 77084001, alt: 70 m., lat: 48°57'48"N, lon: 03°00'42"E

La formule de Montana permet, de manière théorique, de relier une quantité de pluie h(t) recueillie au cours d'un épisode pluvieux avec sa durée t :

Les quantités de pluie h(t) s'expriment en millimètres et les durées t en minutes.
Les coefficients de Montana (a,b) sont calculés par un ajustement statistique entre les durées et les quantités de pluie ayant une fréquence

Cet ajustement est réalisé à partir des pas de temps (durées) disponibles entre 6 minutes et 2 heures. Pour ces pas de temps, la taille de l'échantillon est au minimum de 15 années.

Coefficients de Montana pour des pluies de durée de 6 minutes à 2 heures

Durée de retour	a	b
hebdomadaire	0.435	0,576
bi-mensuelle	0.784	0.621
mensuelle	1.134	0.624
bimestrielle	1.713	0.65
trimestrielle	2.117	0.658
semestrielle	2.8	0.652
annuelle	3.489	0.636
bisannuelle	4.703	0.888

Page 1/1

Edité le : 12/07/2017

N.B.: La vente, redistribution ou rediffusion des informations reçues, en l'état ou sous forme de produits dérivés, est strictement interdite sans l'accord de METEO-FRANCE

Formule des hauteurs

Statistiques sur la période 1999 - 2014

CHANGIS (77)

Indicatif: 77084001, alt: 70 m., lat: 48°57'48"N, lon: 03°00'42"E

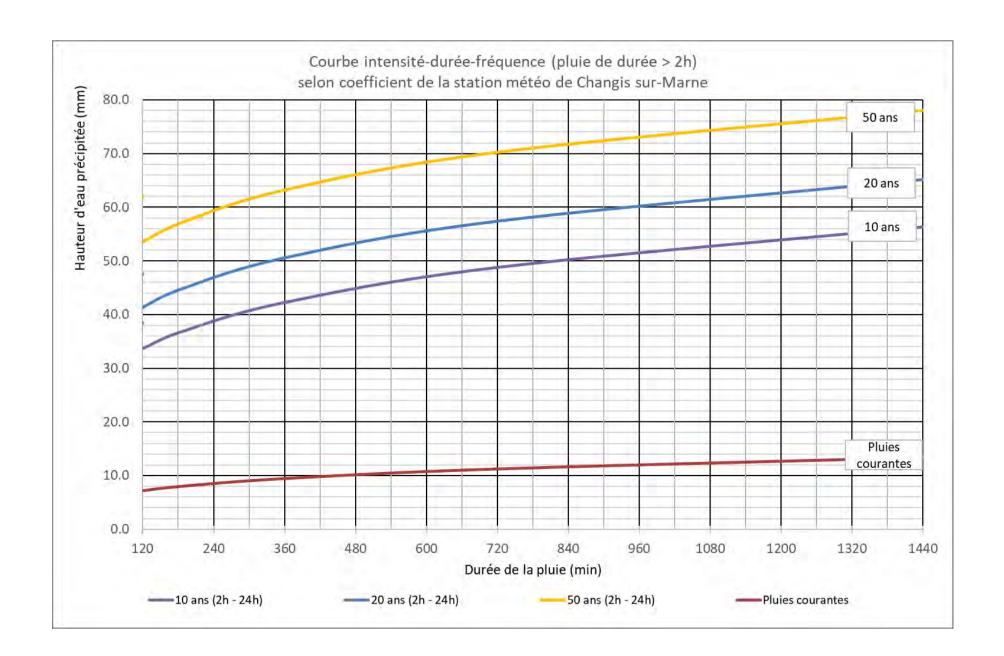
La formule de Montana permet, de manière théorique, de relier une quantité de pluie h(t) recueillie au cours d'un épisode pluvieux avec sa durée t :

h(t) = a x t(1-b)

Les quantités de plule h(t) s'expriment en millimètres et les durées t en minutes.
Les coefficients de Montana (a,b) sont calculés par un ajustement statistique entre les durées et les quantités de plule ayant une durée de retour donnée.

Cet ajustement est réalisé à partir des pas de temps (durées) disponibles entre 6 minutés et 2 neures. Pour ces pas de temps, la taille de l'échantilion est au minimum de 16 années.

Coefficients de Montana pour des pluies de durée de 6 minutes à 2 heures


Durée de retour	ā	b
5 ans	5.706	0.651
10 ans	6,738	0.636
20 ans	7.696	0.619
30 ans	8.204	0.608
50 ans	8.846	0.593
100 ans	9.661	0.573

Page 1/1

Edité le : 12/07/2017

N.B.: La vente, redistribution ou rediffusion des informations reques, en l'état ou sous forme de produits dérivés, est strictement interdite sans l'accord de METEO-FRANCE

Annexe 2
Courbes hauteur – duree – frequence pour les durees inferieures a 2h

Fréquences d'apparition - Formule des hauteurs

Statistiques sur la période 1998 - 2013

CHANGIS (77)

Indicatif: 77084001, alt: 70 m., lat: 48°57'48"N, lon: 03°00'42"E

La formule de Montana permet, de manière théorique, de relier une quantité de pluie h(t) recueillie au cours d'un épisode pluvieux avec sa durée t :

Les quantités de pluie h(t) s'expriment en millimètres et les durées t en minutes. Les coefficients de Montana (a,b) sont calculés par un ajustement statistique entre les durées et les quantités de pluie ayant une fréquence donnée

Cet ajustement est réalisé à partir des pas de temps (durées) disponibles entre 2 heures et 24 heures. Pour ces pas de temps, la taille de l'échantillon est au minimum de 15 années.

Coefficients de Montana pour des pluies de durée de 2 heures à 24 heures

Durée de retour	a	6
hebdomadaire	1.631	0.853
bi-mensuelle	1.678	0.77
mensuelle	2.157	0.749
bimestrielle	2.432	0.724
trimestrielle	2.476	0.706
semestrielle	4.088	0.746
annuelle	5.772	0.762
bisannuelle	6.52	0.754

Page 1/1

Edité le : 12/07/2017

N.B.: La vente, redistribution ou rediffusion des informations reçues, en l'état ou sous forme de produits dérivés, est strictement interdite sans l'accord de METEO-FRANCE

Formule des hauteurs

Statistiques sur la période 1999 - 2014

CHANGIS (77)

Indicatif: 77084001, alt: 70 m., lat: 48°57'48"N, lon: 03°00'42"E

La formule de Montana permet, de manière théorique, de relier une quantité de pluie h(t) recueille au cours d'un épisode pluvieux avec sa durée t :

h(t) = a x t(1-b)

Les quantités de plule h(t) s'expriment en millimètres et les durées t en minutes.
Les coefficients de Montana (a,b) sont calculés par un ajustement statistique entre les durées et les quantités de plule ayant une durée de retour donnée.

Cet ajustement est réalisé à partir des pas de temps (durées) disponibles entre 2 heures et 24 heures. Pour ces pas de temps, la taille de l'échantilion est au minimum de 16 années.

Coefficients de Montana pour des pluies de durée de 2 heures à 24 heures

Durée de retour	, ä	
5 ans	8.755	0.767
10 ans	12.423	0.792
20 ans	17.226	0.817
30 ans	20.586	0.83
50 ans	25.839	0.848
100 ans	34.801	0.872

Page 1/

Edité le : 12/07/2017

N.B.: La vente, redistribution ou rediffusion des informations reçues, en l'état ou sous forme de produits dérivés, est strictement interdite sans l'accord de METEO-FRANCE

Annexe 3
TABLEAUX D'AIDE AU CALCUL DU VOLUME D'EAU A STOCKER

Paragraphe concerné par la méthode	Valeur à calculer	Calcul	Valeur retenue ou calculée	Unité
3.2.2	Pluie de dimensionnement	Т		ans
	Surface totale	S		m²
	Surface Bassins en eau permanent, mare	S1		m²
	Surface Espace vert utilisé pour la rétention d'eaux pluviales (noues, bassins)	S2		m²
	Surface Espaces verts en pleine terre	S3		m²
	Surface Espaces verts sur dalle (ép. Supérieure ou égale à 50 cm)	S4		m²
3.1.5	Surface Sol semi-perméable (pavé joints sable, stabilisé, enrobé drainant)	S 5		m²
	Surface Sol imperméable (enrobés, bétons)	S 6		m²
	Surface Toiture-terrasses végétalisée (susbtrat supérieur à 10cm)	S7		m²
	Surface Toiture-terrasse gravillonnée	S8		m²
	Surface Toiture en pente (tuiles, ardoises, zinc)	S9		m²
	Coefficient de ruissellement équivalent	Ceq = Σ (Si x Cri) / S Cri dans le tableau annexe 3		
	Surface active	Sa = S x Ceq		m²
3.1.3	Perméabilité du sol	К		m/s
4	Surface possible pour l'infiltration	Sinf		m²
	Débit d'infiltration possible	Qf0 = K x Sinf		m3/s
	Débit d'infiltration spécifique	Qs0 = 60000 x Qf0 x Sa / 1000		mm/min
3.2.4a	Hauteur à stocker	dh0 : graphiques en annexe 1 et 2		mm
	Volume à stocker	V0 = 1.2 x dh0 x Sa / 1000		m3
	Si impossibilité just	ifiée de tout gérer en infiltration		
0.00		Q0 Tableau annexe 3		l/s
3.2.3	Rejet débit limité		m3/s	
				l/s
	Débit de fuite total	Qf1 = Q0 + Qinf		m3/s
3.2.4b	Débit spécifique	Qs1 = 60000 x Qf1 / Sa		mm/min
	Hauteur à stocker	dh1 : graphiques en annexe 1 et 2		mm
	Volume à stocker	V1 = 1.2 x dh1 x Sa / 1000		m3

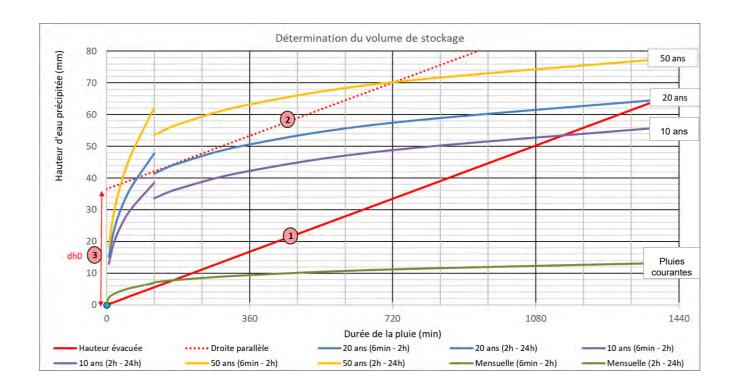
Nature de la surface	Identificant surface	Coefficient de ruissellement (Cri)
Bassins en eau permanent, mare	S1	1
Espace vert utilisé pour la rétention d'eaux pluviales (noues, bassins)	S2	1
Espaces verts en pleine terre	S3	0.3
Espaces verts sur dalle (ép. Supérieure ou égale à 50 cm)	S4	0.5
Sol semi-perméable (pavé joints sable, stabilisé, enrobé drainant)	S 5	0.8
Sol imperméable (enrobés, bétons)	S6	1
Toiture-terrasses végétalisée (susbtrat supérieur à 10cm)	S7	0.7
Toiture-terrasse gravillonnée	S8	0.7
Toiture en pente (tuiles, ardoises, zinc)	S9	1

Débits de rejets autorisés si impossibilité justifiée de gestion totale des eaux pluviales à la parcelle (étude de sol à l'appui)					
Zone	Type de projet	Débit de rejet autorisé	Exutoire		
Zone à fortes contraintes	Extension, Construction, reconstruction	1 l/s/ha (mini technique 3 l/s)	Privilégier milieu superficiel, sinon réseau d'assainissement pluvial public		
Zone à faibles contraintes	Extension, Construction, reconstruction	5 l/s/ha (mini technique 3 l/s)	Privilégier milieu superficiel, sinon réseau d'assainissement pluvial public		
Autres zones	Extension, Construction, reconstruction	Maitrise du ruissellement	Privilégier milieu superficiel, sinon réseau d'assainissement pluvial public <u>si existant</u>		

ANNEXE 4

EXEMPLE DE DIMENSIONNEMENT

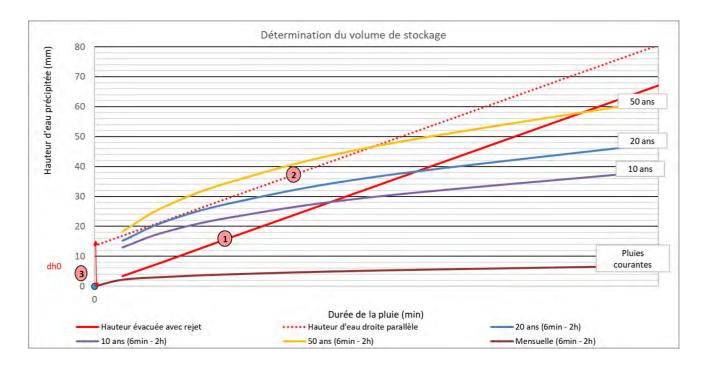
Exemple de proiet :


Projet de construction d'un pavillon en zone à faible contrainte sur une parcelle de 607 m² selon la configuration de la figure suivante. Le maitre d'ouvrage a déterminé que la pluie de dimensionnement nécessaire pour la protection des biens et des personnes est la pluie de temps de retour 20 ans.

La perméabilité du sol de la parcelle a été estimé à 0.000005 m/s (5.10-6 m/s).

Je peux mettre à disposition 50 m² de terrain pour les ouvrages d'infiltration.

Paragraphe concerné par la méthode	Valeur à calculer	Calcul	Valeur retenue ou calculée	Unité
3.2.2	Pluie de dimensionnement	T	20	ans
	Surface totale	S	607	m²
	Surface Bassins en eau permanent, mare	S1	0	m²
	Surface Espace vert utilisé pour la rétention d'eaux pluviales (noues, bassins)	S2	0	m²
	Surface Espaces verts en pleine terre	S3	407	m²
	Surface Espaces verts sur dalle (ép. Supérieure ou égale à 50 cm)	S4	0	m²
3.1.5	Surface Sol semi-perméable (pavé joints sable, stabilisé, enrobé drainant)	S 5	0	m²
	Surface Sol imperméable (enrobés, bétons)	S6	85	m²
	Surface Toiture-terrasses végétalisée (susbtrat supérieur à 10cm)	S7	0	m²
	Surface Toiture-terrasse gravillonnée	S8	0	m²
	Surface Toiture en pente (tuiles, ardoises, zinc)	S9	115	m²
	Coefficient de ruissellement équivalent	Ceq = Σ (Si x Cri) / S Cri dans le tableau annexe 3	0.53	
	Surface active	Sa = S x Ceq	322.1	m²
3.1.3	Perméabilité du sol Perméabilité du sol	К	0.000005 18	m/s mm/h
4	Surface possible pour l'infiltration	Sinf	50	m²
	Débit d'infiltration possible	Qf0 = K x Sinf	0.00025	m3/s
3 2 4a	Débit d'infiltration spécifique	Qs0 = 60000 x Qf0 x Sa / 1000	0.047	mm/min
J.Z.4a	Hauteur à stocker	dh0 : graphiques en annexe 1 et 2	36.5	mm
	Volume à stocker	V0 = 1.2 x dh0 x Sa / 1000	14.11	m3


Sur la courbe, je mesure $dh_0 = 36.5$ mm.

Le volume de rétention nécessaire est de 14.11 m³.

Je peux par exemple faire un bassin sec en décaissant 50m² de terrain sur 28 cm.

S'il est impossible de réaliser une tel volume de stockage (avec justificatif), je peux réaliser une cuve de 5.2 m³ qui stockera les eaux pluviales et les évacuera vers le réseau d'assainissement pluvial public avec un débit régulé de 3 l/s (cf. ci-dessous).

Paragraphe concerné par la méthode	Valeur à calculer	Calcul	Valeur retenue ou calculée	Unité
3.2.2	Pluie de dimensionnement	Т	20	ans
3.1.5	Surface totale	S	607	m²
	Surface Bassins en eau permanent, mare	S1	0	m²
	Surface Espace vert utilisé pour la rétention d'eaux pluviales (noues, bassins)	S2	0	m²
	Surface Espaces verts en pleine terre	S3	407	m²
	Surface Espaces verts sur dalle (ép. Supérieure ou égale à 50 cm)	S4	0	m²
	Surface Sol semi-perméable (pavé joints sable, stabilisé, enrobé drainant)	S 5	0	m²
	Surface Sol imperméable (enrobés, bétons)	S6	85	m²
	Surface Toiture-terrasses végétalisée (susbtrat supérieur à 10cm)	S7	0	m²
	Surface Toiture-terrasse gravillonnée	S8	0	m²
	Surface Toiture en pente (tuiles, ardoises, zinc)	S9	115	m²
	Coefficient de ruissellement équivalent	Ceq = Σ(Si x Cri) / S Cri dans le tableau annexe 3	0.53	
	Surface active	Sa = S x Ceq	322.1	m²
3.1.3	Perméabilité du sol Perméabilité du sol	К	0	m/s mm/h
Si impossibilité justifiée de tout gérer en infiltration				
3.2.3	Rejet débit limité	Q0 Tableau annexe 3	3 0.003	l/s m3/s
3.2.4b	Débit de fuite total	Qf1 = Q0 + Qinf	3	l/s
			0.003	m3/s
	Débit spécifique	Qs1 = 60000 x Qf1 / Sa	0.559	mm/min
	Hauteur à stocker	dh1 : graphiques en annexe 1 et 2	13.5	mm
	Volume à stocker	V1 = 1.2 x dh1 x Sa / 1000	5.22	m3

